Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Locally Implantable Nanofibre Meshes by Sustained Release of Temozolomide for Combined Thermo-chemotherapy to Treat Glioblastoma

Emiho Oe^{a,b}, Nanami Fujisawa^{a,b}, Lili Chen^a, Koichiro Uto^a, Yoshitaka Matsumoto^c and Mitsuhiro Ebara^{*a,b,d}

^a Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

^b Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

^c Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Ibaraki 305-8576, Japan

^d Graduate School of Advanced Engineering, Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan

* E-mail: EBARA.Mitsuhiro@nims.go.jp

Table of contents:

Figure S1. (A)SEM images, (B)TGA measurement results and (C)fibre diameter and of PCL-MNP 10, 20 and 30 wt%. nanofibre meshes.

Figure S2. DSC measurement results of PCL nanofibre and PCL-MNP 30 wt% nanofibre meshes.

Figure S3. T98G cell viability via TMZ concentrations by MTT assay.

Figure S4. Viability of T98G cells treated with different (A) PCL molecular weights and (B) fibre diameters.

Figure S1. (A)SEM images, (B)TGA measurement results and (C)fibre diameter and of PCL-MNP 10, 20 and 30 wt%. nanofibre meshes.

Figure S2. DSC measurement results of PCL nanofibre and PCL-MNP 30 wt% nanofibre meshes.

Figure S3. T98G cell viability via TMZ concentrations by MTT assay.

Figure S4. Viability of T98G cells treated with different (A) PCL molecular weights and (B) fibre diameters.