Electronic Supplementary Information

Dual emission of ESIPT-capable 2-(2-hydroxyphenyl)-4-(1*H*-pyrazol-1-yl)pyrimidines: interplay of fluorescence and phosphorescence

Nikita A. Shekhovtsov, *^a Elena B. Nikolaenkova,^b Alexey A. Ryadun,^a Sofia N. Vorobyeva,^a Viktor P. Krivopalov ^b and Mark B. Bushuev *^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia. E-mail addresses: shekhovtsov@niic.nsc.ru (Nikita A. Shekhovtsov), bushuev@niic.nsc.ru (Mark B. Bushuev). Fax: +7 383 330 94 89; Tel: +7 383 316 51 43. ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.

Table of Contents

NMR and IR spectral data	3
Figure S1	3
Figure S2	4
Figure S3	4
Figure S4	5
Figure S5	6
Figure S6	7
Structural data	8
Table S1	8
Table S2	9
Table S3	10
Figure S7	12
Figure S8	12
Figure S9	12
Figure S10	13
Figure S11	13
Figure S12	13
Photophysical and computational data	14
Figure S13	14
Figure S14	15
Figure S15	16
Figure S16	17
Figure S17	17
Table S4	18
Table S5	19
Table S6	20
Table S7	21
Table S8	22
Table S9	23
Table S10	24
Table S11	25
Table S12	26
Table S13	27
Table S14	29
Table S15	30
Table S16	31

NMR and IR spectral data

Figure S1. ¹H NMR spectrum of 2-(2-hydroxyphenyl)-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (**HL**¹).

Figure S2. ¹³C NMR spectrum of 2-(2-hydroxyphenyl)-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (**HL**¹).

Figure S3. IR spectrum of 2-(2-hydroxyphenyl)-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (**HL**¹).

Figure S4. ¹H NMR spectrum of 2-(2-hydroxyphenyl)-4-(3,5-diphenyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (**HL**²).

methylpyrimidine (**HL**²).

Structural data

Complex	HL ¹	HL ²
Empirical formula	C ₁₆ H ₁₆ N ₄ O	C ₂₆ H ₂₀ N ₄ O
Formula weight	280.33	404.46
Crystal system	monoclinic	triclinic
Space group, Z	P2 ₁ /n <i>, 4</i>	P-1, 2
a(Å)	15.0005(5)	10.0306(9)
b(Å)	5.2660(2)	10.1285(9)
c(Å)	18.7118(7)	12.2622(10)
α/°	90	94.126(3)
β/°	113.3110(10)	113.697(3)
γ/°	90	109.740(3)
V(Å3)	1357.44(9)	1042.06(16)
dCalc(g/cm3)	1.372	1.289
μ/mm ⁻¹	0.090	0.081
F(000)	592.0	424.0
Crystal size (mm)	0.160 × 0.100 × 0.050	0.080 × 0.080 × 0.030
20 range for data collection/°	4.462 - 61.042	3.738 - 52.808
Index ranges	-21 ≤ h ≤ 21	-12 ≤ h ≤ 12
	-7 ≤ k ≤ 7	-12 ≤ k ≤ 12
	-26 ≤ l ≤ 26	-15 ≤ l ≤ 15
Reflections collected	17280	20705
Independent reflections (Rint)	4138 [R _{int} = 0.0616]	4276 [R _{int} = 0.0352]
Completeness to theta = 50.5°	99.9 %	99.9 %
Data / restraints / parameters	4138/0/194	4276/0/282
Goodness-of-fit on F2	1.042	1.029
Final R indices (I>= 2σ (I))	$R_1 = 0.0586$, $wR_2 = 0.1410$	$R_1 = 0.0451$, $wR_2 = 0.1172$
R indices (all data)	$R_1 = 0.0990$, $wR_2 = 0.1648$	$R_1 = 0.0689, wR_2 = 0.1327$
Largest diff. peak and hole (e/Å3)	0.32/-0.27	0.13/-0.20

Table S1. Crystal data and structure refinement for HL¹ and HL².

Table S2. Bond lengths and angles in the structure of $\rm HL^1$.

Distance	<i>d,</i> Å	Angle	ω
01-C1	1.353(2)	C11-N2-C7	116.52(15)
N2-C11	1.323(2)	N4-N3-C11	117.86(14)
N2-C7	1.341(2)	N4-N3-C12	111.94(13)
N3-N4	1.3820(19)	C12-N3-C11	130.20(15)
N3-C11	1.400(2)	C15 –N4 –N3	104.71(14)
N3-C12	1.382(2)	C7-N1-C8	117.31(15)
N4-C15	1.320(2)	N2 C11 N3	116.83(15)
N1-C7	1.350(2)	N2 -C11 -C10	122.97(16)
N1-C8	1.351(2)	C10-C11-N3	120.20(16)
C11-C10	1.395(2)	N3 -C12 -C13	126.23(15)
C12-C14	1.366(2)	C14 –C12 –N3	105.29(15)
C12-C13	1.482(2)	C14 –C12 –C13	128.47(16)
C7-C6	1.475(2)	N2 –C7 –N1	124.97(16)
C5-C6	1.401(2)	N2 –C7 –C6	117.53(15)
C5-C4	1.379(3)	N1 –C7 –C6	117.50(15)
C1-C6	1.411(2)	C4 –C5 –C6	121.52(17)
C1-C2	1. 395(3)	01-C1-C6	122.93(16)
C15-C14	1.416(2)	01 –C1 –C2	117.29(16)
C15-C16	1.494(2)	C2 –C1 –C6	119.78(16)
C8-C10	1.372(2)	N4 -C15 -C14	111.25(16)
C8-C9	1.498(2)	N4C15C16	120.86(16)
C3-C4	1.394(3)	C14 –C15 –C16	127.89(16)
C3-C2	1.377(3)	C5 –C6 –C7	119.49(15)
		C5 –C6 –C1	118.31(16)
		C1 –C6 –C7	122.20(15)
		C12 –C14 –C15	106.81(15)
		N1 -C8 -C10	121.16(15)
		N1 -C8 -C9	116.16(16)
		C10-C8-C9	122.68(16)
		C8 –C10 –C11	117.04(16)
		C2 –C3 –C4	120.42(17)
		C5 –C4–C3	119.41(17)
		C3 –C2 –C1	120.55(17)

Table S3. Bond lengths and angles in the structure of $\rm HL^2.$

Distance	d, Å	Angle	ω
N2-C11	1.3246(18)	C11-N2-C7	115.98(13)
N2-C7	1.3436(19)	N4-N3-C11	116.93(11)
01-C2	1.353(2)	N4-N3-C12	111.67(12)
N3-N4	1.3725(16)	C12-N3-C11	131.08(12)
N3-C11	1.4077(19)	C7-N1-C8	117.90(13)
N3-C12	1.3842(18)	C20-N4-N3	105.03(12)
N1-C7	1.3426(18)	N2 C11 N3	116.60(12)
N1-C8	1.3466(19)	N2 -C11 -C10	123.46(14)
N4-C20	1.3259(19)	C10-C11-N3	119.94(13)
C11-C10	1.3872(19)	N2 –C7 –C1	117.42(13)
C12-C19	1.358(2)	N1 –C7 –N2	124.85(14)
C1-C6	1.400(2)	N1 –C7 –C1	117.73(14)
C1-C2	1.407(2)	N4-C20-C21	120.36(13)
C21-C22	1.391(2)	N4-C20-C19	110.77(13)
C21-C26	1.380(2)	C19–C20 –C21	128.86(14)
C14-C15	1.381(2)	C14–C13 –C12	119.32(14)
C6-C5	1.377(2)	C14–C13 –C18	118.75(14)
C22-C23	1.376(2)	C18–C13 –C12	121.80(13)
C18-C17	1.377(2)	N1-C8-C10	120.85(14)
C2-C3	1.393(2)	N1-C8-C9	117.14(14)
C7-C1	1.473(2)	С10-С8-С9	122.01(14)
C20-C21	1.473(2)	N3-C12 -C13	126.07(13)
C20-C19	1.412(2)	C19–C12 –N3	105.50(13)
C13-C12	1.477(2)	C19–C12 –C13	128.22(13)
C13-C14	1.386(2)	C6–C1 –C7	119.71(14)
C13-C18	1.394(2)	C6–C1 –C2	118.44(15)
C8-C10	1.373(2)	C2–C1 –C7	121.85(14)
C8-C9	1.495(2)	C8–C10–C11	116.92(14)
C15-C16	1.370(2)	C22–C21 –C20	121.29(14)
C16-C17	1.382(2)	C26–C21 –C20	120.34(15)
C5-C4	1.382(3)	C26–C21 –C22	118.36(16)
C3-C4	1.373(3)	C15–C14 –C13	120.72(15)
C23-C24	1.370(3)	C12–C19–C20	107.03(13)
C26-C25	1.382(3)	C5–C6 –C1	121.35(17)

C24-C25	1.374(3)	C23–C22 –C21	120.82(17)
		C17–C18–C13	119.96(15)
		01–C2 –C1	123.21(15)
		01–C2 –C3	117.31(16)
		C3–C2 –C1	119.48(16)
		C16–C15 –C14	120.21(15)
		C15–C16 –C17	119.60(15)
		C18–C17 –C16	120.71(16)
		C6–C5 –C4	119.46(18)
		C4–C3 –C2	120.60(18)
		C24–C23 –C22	120.25(18)
		C3–C4 –C5	120.65(17)
		C21–C26 –C25	120.43(18)
		C23–C24 –C25	119.59(18)
		C24–C25 –C26	120.54(19)

Figure S7. Packing of HL^1 (view along the *a* axis).

Figure S8. Packing of **HL**¹ (view along the *b* axis).

Figure S9. Packing of **HL**¹ (view along the *c* axis).

Figure S10. Packing of HL^2 (view along the *a* axis).

Figure S11. Packing of HL^2 (view along the *b* axis).

Figure S12. Packing of HL^2 (view along the *c* axis).

Photophysical and computational data

Figure S13. The potential energy curve of the ground state of HL^2 .

Figure S14. Photoluminescence decay curves for HL¹.

Figure S15. Photoluminescence decay curves for HL².

Figure S16. Comparison of the experimental absorption spectrum of **HL**¹ with those computed using PBE0 and B3LYP functionals.

Figure S17. Comparison of the experimental absorption spectrum of **HL**² with those computed using PBEO and B3LYP functionals.

Table S4. Optimized geometry of the S_0 state of HL^1 (enol form, S_0^E) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in MeCN continuum solvation model.

Table S5. Optimized geometry of the S_0 state of HL^1 (enol form, S_0^E) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

alculated in Gaussian a	t the DSEN /0 SI'g(dy level of theory in	the gas phase.	
		80.0		
	1.797			
		I	<u>e</u>	
	• •			
	e e	60	6	
	6	6		
0	6.494866000000	5.100385000000	5.09124/000000	
H	5.84//0/00000	3.727248000000	6.052380000000	
IN N	7.787983000000	2.671516000000	8.39/2/5000000	
IN N	6 73380000000		9.970281000000	
N N	6 100017000000	3 1135/100000	6 8387/000000	
l l	6 969538000000	1 636870000000	8 897963000000	
C	8,700558000000	1.043320000000	10,638446000000	
C	7.295658000000	3.345573000000	7.394343000000	
C	9.322662000000	4.747104000000	7.329130000000	
Н	9.657659000000	4.141301000000	8.163038000000	
C	7.612601000000	5.273277000000	5.660599000000	
C	7.453742000000	-0.617575000000	11.484435000000	
C	8.092260000000	4.475440000000	6.784369000000	
C	8.689759000000	0.064627000000	11.615398000000	
Н	9.478971000000	-0.127126000000	12.329671000000	
C	9.786484000000	2.034881000000	10.359158000000	
Н	10.181909000000	1.933499000000	9.344993000000	
н	10.5988/6000000	1.859452000000	11.0/1884000000	
Н	9.438267000000	3.065121000000	10.4/1321000000	
L C	5.246903000000	2.099546000000	7.295453000000	
L L	5.751150000000	0.54570100000	8.309489000000	
C III	9 730452000000	6 570211000000	5 761598000000	
е Н	10.363188000000	7.366427000000	5.379502000000	
C	10.157282000000	5.786613000000	6.835984000000	
H	11.121915000000	5.961882000000	7.300954000000	
С	6.929373000000	-1.764095000000	12.290731000000	
Н	6.846642000000	-1.498129000000	13.351749000000	
Н	7.593686000000	-2.634324000000	12.222045000000	
Н	5.939284000000	-2.054992000000	11.928606000000	
C	8.494813000000	6.325069000000	5.186795000000	
Н	8.126718000000	6.911078000000	4.35078900000	
C	3.939603000000	1.93101000000	6.603809000000	
Н	3.315188000000	2.8358/3000000	6.665932000000	
н	3.380397000000	1.10910/000000	7.059693000000	
H	4.0605000000000	1.7008560000000	5.533818000000	

Table S6. Optimized geometry of the S_1 state of HL^1 (keto form, S_1^{κ}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

inculated in Gaussian a		a rever or theory in t	ine gas phase.	
		6		
	1.692			
	I		9	
			-	
	Ť Ĭ		7	
			0	
0	6.568009000000	4.891750000000	5.029478000000	
Н	5.859405000000	3.729178000000	6.034465000000	
Ν	7.782064000000	2.632656000000	8.411703000000	
Ν	7.516383000000	0.916948000000	9.950136000000	
Ν	6.736190000000	-0.096175000000	10.460629000000	
N	6.064886000000	3.128351000000	6.867260000000	
C	7.004508000000	1.671363000000	8.894156000000	
C	8.736902000000	1.009461000000	10.611894000000	
C	7.301518000000	3.373213000000	7.390038000000	
C	9.274921000000	4.861498000000	7.431565000000	
Н	9.585592000000	4.335745000000	8.328655000000	
C	7.664777000000	5.194754000000	5.633344000000	
C	7.452925000000	-0.638859000000	11.432580000000	
C	8.103694000000	4.485133000000	6.820805000000	
L	8./10431000000	0.018428000000	11.565016000000	
H	9.499627000000	-0.205429000000	12.270121000000	
L L	9.819847000000	1.994304000000	0.202045000000	
н	10.178089000000	1.911308000000	11 00813600000	
н	9 472805000000	3 024228000000	10.455073000000	
C	5.257400000000	2,155451000000	7,319811000000	
C	5.707374000000	1.375859000000	8.398461000000	
H	5.108712000000	0.587575000000	8.826692000000	
С	9.706411000000	6.606785000000	5.791547000000	
Н	10.312266000000	7.412929000000	5.387512000000	
C	10.102662000000	5.924853000000	6.921663000000	
Н	11.027434000000	6.168362000000	7.434828000000	
С	6.920040000000	-1.788657000000	12.226929000000	
Н	6.856046000000	-1.536847000000	13.292657000000	
Н	7.571089000000	-2.666803000000	12.136224000000	
Н	5.921277000000	-2.058587000000	11.873184000000	
C	8.49783000000	6.24897000000	5.153397000000	
H	8.16491000000	6.762249000000	4.256416000000	
C	3.938894000000	1.948815000000	6.64/451000000	
Н	3.755014000000	2.703568000000	5.877424000000	
Н	3.123903000000	1.991685000000	7.381264000000	
Н	3.8976500000000	0.956727000000	0.11/92100000	

Table S7. Optimized geometry of the S_2 state of HL^1 (keto form, S_2^{K}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

Table S8. Optimized geometry of the T_1 state of HL^1 (enol form, T_1^E) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

Table S9. Optimized geometry of the T_1 state of HL^1 (keto form, T_1^{K}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

Table S10. Optimized geometry of HL^1 near S_0/S_1 conical intersection in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

Table S11. Optimized geometry of the S_0 state of HL^2 (enol form, S_0^E) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in MeCN continuum solvation model.

Н	-4.699458000000	2.603089000000	-1.165206000000	
С	-5.923113000000	-0.556105000000	-0.777024000000	
Н	-6.846325000000	-1.126872000000	-0.810564000000	
С	6.576913000000	-1.624400000000	-0.242772000000	
Н	6.957782000000	-2.635069000000	-0.123679000000	
C	-5.911704000000	0.811513000000	-1.028932000000	
Н	-6.843325000000	1.319106000000	-1.264184000000	
C	5.587576000000	0.968611000000	-0.540948000000	
Н	5.211429000000	1.979200000000	-0.667377000000	
C	7.451439000000	-0.578425000000	-0.559578000000	
Н	8.512388000000	-0.77302000000	-0.689073000000	
C	6.950981000000	0.718410000000	-0.707328000000	
Н	7.620796000000	1.537164000000	-0.95504000000	

C	-0.643904000000	2.089721000000	1.525491000000	
Н	-0.470293000000	1.314933000000	2.266399000000	
C	-4.747922000000	-1.245776000000	-0.362634000000	
C	-1.093299000000	4.075566000000	-0.384379000000	
Н	-1.267041000000	4.843311000000	-1.133439000000	
C	-1.885267000000	4.022474000000	0.763423000000	
Н	-2.679597000000	4.748288000000	0.913805000000	
C	-1.092158000000	-4.598028000000	0.688818000000	
Н	-1.748013000000	-4.812987000000	1.540146000000	
Н	-0.095910000000	-4.995748000000	0.899561000000	
Н	-1.505693000000	-5.122543000000	-0.180289000000	
C	-1.655672000000	3.026495000000	1.718980000000	
Н	-2.270783000000	2.977672000000	2.613028000000	
C	-4.728506000000	1.524063000000	-0.862668000000	
Н	-4.719077000000	2.592900000000	-1.053734000000	
C	-5.945497000000	-0.559159000000	-0.620765000000	
Н	-6.868885000000	-1.129861000000	-0.619918000000	
C	6.556055000000	-1.637287000000	-0.311890000000	
Н	6.917420000000	-2.662199000000	-0.302845000000	
C	-5.935652000000	0.807336000000	-0.867300000000	
Н	-6.873301000000	1.320851000000	-1.064497000000	
C	5.617369000000	0.987841000000	-0.334911000000	
Н	5.261872000000	2.013814000000	-0.348591000000	
C	7.457770000000	-0.578628000000	-0.463854000000	
Н	8.520603000000	-0.776288000000	-0.572941000000	
C	6.982357000000	0.734595000000	-0.474696000000	
Н	7.673583000000	1.564653000000	-0.593180000000	

Table S13. Optimized geometry of the S_1 state of HL^2 (keto form, S_1^K) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

C	-1.052635000000	-3.145831000000	0.472034000000	
C	1.265179000000	1.162324000000	0.131037000000	
С	-3.577541000000	-0.526913000000	-0.362175000000	
C	0.112785000000	-2.381568000000	0.492686000000	
Н	1.069712000000	-2.841550000000	0.704540000000	
C	4.708615000000	-0.096340000000	-0.204045000000	
C	0.042007000000	3.221747000000	-0.514941000000	
Н	0.681913000000	3.284946000000	-1.390541000000	
C	2.611271000000	1.432363000000	-0.047750000000	
Н	3.046847000000	2.419646000000	-0.090316000000	
C	-3.615732000000	0.832696000000	-0.565663000000	
Н	-2.687262000000	1.389619000000	-0.514693000000	
C	5.198904000000	-1.410927000000	-0.109438000000	
Н	4.497853000000	-2.218992000000	0.070908000000	
C	-0.654918000000	2.054383000000	1.482269000000	
Н	-0.544581000000	1.224257000000	2.172627000000	
С	-4.807523000000	-1.306022000000	-0.417699000000	
C	-0.928514000000	4.199258000000	-0.283054000000	
Н	-1.031226000000	5.030405000000	-0.975826000000	
C	-1.764876000000	4.106877000000	0.831899000000	
Н	-2.518813000000	4.86774000000	1.015732000000	
C	-1.158421000000	-4.607372000000	0.744770000000	
Н	-1.796406000000	-4.819198000000	1.615928000000	
Н	-0.167434000000	-5.023532000000	0.945277000000	
Н	-1.587628000000	-5.154519000000	-0.107464000000	
C	-1.622188000000	3.030211000000	1.713993000000	
Н	-2.265192000000	2.952153000000	2.586667000000	
C	-4.831865000000	1.516045000000	-0.833666000000	
Н	-4.814841000000	2.590826000000	-0.980462000000	
C	-6.026435000000	-0.568515000000	-0.700053000000	
Н	-6.938522000000	-1.155239000000	-0.742582000000	
C	6.560827000000	-1.671506000000	-0.245605000000	
Н	6.922198000000	-2.693892000000	-0.169727000000	
C	-6.030917000000	0.802195000000	-0.90190000000	
Н	-6.963769000000	1.319427000000	-1.108764000000	
C	5.621184000000	0.945551000000	-0.439330000000	
Н	5.264355000000	1.967972000000	-0.521679000000	
C	7.461756000000	-0.626969000000	-0.477721000000	
Н	8.523696000000	-0.831859000000	-0.582873000000	
C	6.984325000000	0.682951000000	-0.573729000000	
Н	7.674005000000	1.503116000000	-0.755282000000	

Table S14. Optimized geometry of the S_2 state of HL^2 (keto form, S_2^{K}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

C	6.007828000000	0.609793000000	-0.463797000000	
Н	6.915899000000	1.204895000000	-0.454859000000	
C	-6.574233000000	1.613999000000	-0.194130000000	
Н	-6.939640000000	2.636994000000	-0.157406000000	
C	6.052263000000	-0.786318000000	-0.652192000000	
Н	7.008750000000	-1.282202000000	-0.791981000000	
C	-5.625832000000	-1.006523000000	-0.287866000000	
Н	-5.266917000000	-2.030712000000	-0.328540000000	
С	-7.47610400000	0.553987000000	-0.339847000000	
Н	-8.542377000000	0.748303000000	-0.416492000000	
C	-6.994443000000	-0.757147000000	-0.386228000000	
Н	-7.685085000000	-1.588495000000	-0.500052000000	

Table S15. Optimized geometry of the T_1 state of HL^2 (enol form, T_1^E) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

Н	-0.448023000000	1.326467000000	2.271256000000	
С	-4.781783000000	-1.272434000000	-0.375931000000	
С	-1.060599000000	4.111937000000	-0.355548000000	
Н	-1.229554000000	4.888023000000	-1.097286000000	
С	-1.852496000000	4.053256000000	0.792222000000	
Н	-2.640826000000	4.784116000000	0.950933000000	
С	-1.087578000000	-4.579506000000	0.753709000000	
Н	-2.10501000000	-4.977288000000	0.738726000000	
Н	-0.641076000000	-4.77920000000	1.735332000000	
Н	-0.486417000000	-5.115645000000	0.008925000000	
C	-1.625829000000	3.048520000000	1.739809000000	
Н	-2.238312000000	2.996988000000	2.635733000000	
C	-4.770859000000	1.478316000000	-0.897909000000	
Н	-4.79037000000	2.546352000000	-1.099639000000	
C	-5.990336000000	-0.614771000000	-0.640094000000	
Н	-6.897906000000	-1.210380000000	-0.631869000000	
C	6.539672000000	-1.678148000000	-0.321570000000	
Н	6.888191000000	-2.70754000000	-0.306692000000	
C	-6.01104000000	0.746366000000	-0.901328000000	
Н	-6.944314000000	1.259192000000	-1.106429000000	
C	5.633134000000	0.957527000000	-0.359226000000	
Н	5.289959000000	1.987671000000	-0.379088000000	
C	7.454358000000	-0.632125000000	-0.483134000000	
Н	8.514408000000	-0.843563000000	-0.593957000000	
C	6.994502000000	0.686676000000	-0.501313000000	
Н	7.695371000000	1.507615000000	-0.627392000000	

Table S16. Optimized geometry of the T_1 state of HL^2 (keto form, T_1^K) in Cartesian (XYZ) coordinates as calculated in Gaussian at the B3LYP/6-31+g(d) level of theory in the gas phase.

C	1.255506000000	1.180776000000	0.174851000000	
C	-3.511554000000	-0.524419000000	-0.377575000000	
C	0.154406000000	-2.427212000000	0.462555000000	
Н	1.120613000000	-2.875870000000	0.644477000000	
C	4.707905000000	-0.037415000000	-0.204330000000	
C	-0.087528000000	3.159449000000	-0.501980000000	
Н	0.532190000000	3.234490000000	-1.391011000000	
C	2.597624000000	1.471193000000	0.006118000000	
Н	3.023473000000	2.463831000000	-0.003028000000	
C	-3.544101000000	0.843115000000	-0.642632000000	
Н	-2.614415000000	1.398922000000	-0.623359000000	
C	5.204168000000	-1.352837000000	-0.177582000000	
Н	4.506194000000	-2.172690000000	-0.044417000000	
C	-0.672939000000	2.016890000000	1.545024000000	
Н	-0.500447000000	1.213067000000	2.254333000000	
C	-4.785714000000	-1.263910000000	-0.401073000000	
C	-1.115264000000	4.081076000000	-0.280638000000	
Н	-1.282449000000	4.882225000000	-0.995856000000	
C	-1.925094000000	3.969801000000	0.850872000000	
Н	-2.725079000000	4.684552000000	1.024636000000	
C	-1.059912000000	-4.634179000000	0.741294000000	
Н	-1.691843000000	-4.842927000000	1.614368000000	
Н	-0.062439000000	-5.038481000000	0.927963000000	
Н	-1.497877000000	-5.165331000000	-0.113913000000	
C	-1.697378000000	2.933809000000	1.764643000000	
Н	-2.321067000000	2.841956000000	2.649750000000	
C	-4.750122000000	1.511378000000	-0.921181000000	
Н	-4.718200000000	2.580196000000	-1.114512000000	
C	-5.994128000000	-0.530668000000	-0.692669000000	
Н	-6.912632000000	-1.109588000000	-0.700458000000	
C	6.56794000000	-1.599817000000	-0.320755000000	
Н	6.933474000000	-2.623303000000	-0.297658000000	
C	-5.980657000000	0.829216000000	-0.948583000000	
Н	-6.900709000000	1.363171000000	-1.165637000000	
C	5.616880000000	1.019267000000	-0.379394000000	
Н	5.256258000000	2.043324000000	-0.408354000000	
C	7.46528000000	-0.540622000000	-0.492830000000	
Н	8.528621000000	-0.734942000000	-0.603830000000	
C	6.981974000000	0.770174000000	-0.521266000000	
Н	7.668499000000	1.602046000000	-0.655604000000	