Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

New Journal of Chemistry

A self-adhesive, self-healing and antibacterial hydrogel based on

PVA/MXene-Ag/sucrose for fast-response, high-sensitive and ultra-

durable strain sensor

Chenxing Li^{a,1}, Ao Zheng^{b,1}, Jiayi Zhou^a, Wenwei Huang^a, Yan Zhang^{a*}, Jingxuan Han^a, Lingyan Cao^{b*}, Dongye Yang^{a*}

^a School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China;

^b Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P.R. China.

Content

1.	XRD and XPSpage 2
2.	SEMpage 2
3.	Mechanism propertiespage 2
4.	Lap shear curvepage 3
5.	Conductivitypage 3
6.	Relative resistance changes and GF valuespage 4
7.	Cycling stability tests of P/M-Ag hydrogelpage 4
8.	Writing board for information encryptionpage 5
9.	Table S1

Fig. S1. (a) XRD patterns of MXene and MXene-Ag NPs. (b) XPS profiles of the MXene and MXene-Ag NPs. (b) Ag 3d in the MXene-Ag NPs.

Fig. S2. SEM image of the MXene-AgNPs and corresponding EDS elemental mapping images for C, Ti, O, F, and Ag elements.

Fig. S3. (a) Cyclic loading-unloading curves and (b) stress and energy dissipation of PVA, P/M, P/M-Ag, P/S, and P/M-Ag/S hydrogels at a tensile strain of 50%.

Fig. S4. (a-d) Lap shear curves for PVA, P/M, P/M-Ag, and P/S with different materials (glasses, tapes, pigskins, cloths, metals, and leathers).

Fig. S5. Conductivity of PVA, P/M, P/M-Ag, P/S and P/M-Ag/S hydrogels.

Fig. S6. (a-d) Relative resistance changes and GF values of PVA, P/M, P/M-Ag, and P/S hydrogel sensors of varied tensile strain (0–50%), respectively.

Fig. S7. Cycling stability tests of P/M-Ag hydrogel sensor at strain from 0% to 30% for 50 cycles.

Fig. S8. (a) Relative resistance changes in writing different English words ("One", "Two", "Yes", and "No"). (b) Schematic illustration of mechanism of writing board.

Materials	Elongation at break (%)	Sensing Stability (T/C) (cycles)	Self- healing	Self- adhesive	Response Time (T/C) (ms)	Recovery Time (T/C) (ms)	GF (T/C)	Anti- bacteri al	Ref.
PVA/MX ene-Ag /Suc	194	1500 (30%) /6000 (250 kPa)	Yes	Yes	82.8/28.8	102.6/153	3.92 /-0.81	Yes	This work
PVA/SA/ MXene	225	1000 (30%) /N-G	N-G	N/G	62.5/ N-G	147.3 / N-G	0.97 /N-G	No	1
PVA/MX ene	3400	N/G	Yes	Yes	N-G	N-G	25/80	No	2
PVA/MX ene/CS /Gly	16.37	1000(8%) /N-G	N-G	N-G	120/N-G	90/N-G	N-G	No	3
PVA/SB MA /HEMA	337	1000(50 %)/ N-G	N-G	N-G	130/N-G	200/N-G	1.43 /N-G	No	4
PVA/AgN Ws /OPs	1073	1000(15 %) /N-G	Yes	Yes	20/N-G	N-G	1.34 /N-G	No	5
PVA/SNF /CN	585	20(20%)/ N-G	Yes	N-G	276/N-G	N-G	0.74 /N-G	Yes	6
PVA/CN F	1919	540(25%) /N-G	Yes	N-G	N-G	N-G	N-G /0.75	No	7
PVA/gela tin /PCD– Fc–CHO	1156	12(30%)/ N-G	Yes	Yes	512/N-G	600/N-G	3.42 /N-G	No	8
PVA/CA/ AgNPs	600	200(50%) /N-G	N-G	Yes	90/N-G	240/N-G	1.6 /N-G	No	9

Table S1. Performance comparison of some conductive PVA-based hydrogels.

Note: 'N-G' indicates 'not given' in the references, 'T/C' indicates 'Tensile/ compressive' in the Table.

Reference

- 1T. Wang, J. Wang, Z. Li, M. Yue, X. Qing, P. Zhang, X. Liao, Z. Fan and S. Yang, *J Appl Polym Sci*, 2022, **139**, 51627.
- 2Y.-Z. Zhang, K. H. Lee, D. H. Anjum, R. Sougrat, Q. Jiang, H. Kim and H. N. Alshareef, *Sci. Adv.*, 2018, 4, eaat0098.
- 3Z. Wang, Z. Zhou, S. Wang, X. Yao, X. Han, W. Cao and J. Pu, *Composites Part B: Engineering*, 2022, **239**, 109954.
- 4J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma, H. Wei and S. Lü, *Advanced Functional Materials*, 2022, **32**, 2107404.
- 5Y. Ma, K. Liu, L. Lao, X. Li, Z. Zhang, S. Lu, Y. Li and Z. Li, *International Journal of Biological Macromolecules*, 2022, **205**, 491–499.
- 6S. Bao, J. Gao, T. Xu, N. Li, W. Chen and W. Lu, *Chemical Engineering Journal*, 2021, **411**, 128470.
- 7X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, P.-Y. Feng, Y.-M. Tan and L.-S. Turng, *Sensors and Actuators B: Chemical*, 2019, **295**, 159–167.
- 8X. Fan, J. Geng, Y. Wang and H. Gu, Polymer, 2022, 246, 124769.
- 9L. Chen, X. Chang, H. Wang, J. Chen and Y. Zhu, Nano Energy, 2022, 96, 107077.