Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Revealing the high activity of WO₃-SBA-15 with isolated tungsten

oxide species in cis-cyclooctene epoxidation

Penghui Li,^{a,b} Huixiang Wang,^{a,c} Junhua gao,^a Liancheng Wang,^a Jing Shi,^a Yu Meng,^{*d} Junfen Li^{*a} and Baoliang Lv^{*a,c}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, China

^d Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China

E-mail addresses: mengyu@yulinu.edu.cn; lijunfen@sxicc.ac.cn; lvbl@sxnu.edu.cn

Fig. S1. The thermogravimetric curve of uncalcined $WO_3/SBA-15$ and calcined $WO_3/SBA-15$.

TG was conducted on SETSYS EVOLUTION TGA 16/18 (SETARAM Corporation, France). 10 mg of the sample was heated from 25 °C to 800 °C with a heating rate of 10 °C/min in a dynamic air atmosphere. The peroxide tungsten species are not stable enough and could pyrolyze to form tungsten oxide at around 500 °C verified by the TG analysis as reported in the literatures ^[1-3]. Thus, TG analysis revealed the presence of stable tungsten oxide, but not peroxides, in calcined WO₃/SBA-15.

Fig. S2. Raman spectrum of SBA-15. (To illustrate the intensity of peaks assigning to SBA-15, the supported catalysts were also displayed)

Fig. S3. FT-IR spectra of all samples.

Fig. S4. H₂-TPR profiles of the three catalysts.

H₂-TPR was performed on a Xianquan 5080B apparatus. The as-prepared catalysts (100 mg) were heated at 250 °C for 1 h under an Ar stream (20 mL/min⁻¹). After cooling down to 100 °C, the samples were reduced under a mixture stream of 10 vol% H₂ in Ar (20 mL/min⁻¹) with the temperature ramping rate at 10 °C/min⁻¹. The signal was detected with a thermal conductivity detector (TCD).

type	standard curve	Coefficients of determination
		(R^2)
cis-cyclooctene	$y_1 = 1.13829 x_1 - 0.00471$	0.99748
cis-cyclooctene oxide	$y_2 = 1.0982 x_2 - 0.02002$	0.99969

Table S1 The equation of standard curve for quantitative analysis.

Where, x_1 =Area(cis-cyclooctene)/Area(anisole), x_2 =Area(cis-cyclooctene oxide)/Area(anisole), the areas of cis-cyclooctene, cis-cyclooctene oxide and anisole were obtained by the corresponding peak area in gas chromatography results; y_1 =m(cis-cyclooctene)/m(anisole), y_2 =m(cis-cyclooctene oxide)/m(anisole), the mass of anisole was obtained by weighing. The contents of cis-cyclooctene and cis-cyclooctene oxide can be calculated by bringing these values into the corresponding equations, respectively.

Catalyst Solvent	Solvent	Sub.	Oxidant ^a	n(sub.):	Temp.	Time	Con.	Select.	Ref
	Borvent			$n(H_2O_2)$	(°C)	(h)	(%)	(%)	
W-Zn/SnO ₂ DMC	DMC	1_hevene	$H_2O_2(60$	5.1	60	1	96 ^b	95	[4]
	1-nexene	wt%)	5.1	00	4	90	95	[+]	
Nb ₂ O ₅ -SiO ₂ MeOH	cyclooctene	$H_2O_2(35)$	2:1	70	5	49	100	[5]	
		wt%)							
$Nb-SiO_2$	MeOH	cyclooctene	H_2O_2	1:1	70	5.	39	100.	[6
Ag-WO ₃ CH ₃ CN	CUCN	1 1	H_2O_2 (50	1.2	80	0	02	05	[7]
	1-nexene	wt%)	1:5	80	0	92	95	[/]	
H_2O - WO_x	CH ₃ CN	cyclooctene	H_2O_2	1:1.175	85	0.75	99.7	98.9	[8]
Ni/SiO ₂ -Liq	CH ₃ CN	cyclohexene	H_2O_2	1:2	90	4	65	74	[9]
Nb/SiO ₂ -	CH ₃ CN lin	1:	H_2O_2	1:2	90	3	74	98	[10]
Liq		nmonene							
Nb-HAP	CH ₃ CN	limonene	H_2O_2	1:2	90	6	39	62	[11]

Table S2. Reaction conditions of olefin epoxidation with H_2O_2 .

 $\overline{{}^{a}H_{2}O_{2} \text{ with 30 wt\%. }^{b}Con (\%)} = n(epoxide)/n_{0}(H_{2}O_{2})*100\%.$

Fig. S5. Profiles of epoxidation of cis-cyclooctene with H_2O_2 over Bulk-WO₃ at different temperatures.

Fig. S6. The catalytic performance of WO_3 -SBA-15 with different molar ratio of H_2O_2 to cis-cyclooctene. Reaction conditions: 0.4 mL of cis-cyclooctene, 50 mg of catalyst, 10 mL of acetonitrile, 80 °C and reaction for 1 h.

The decrease of the conversion (with the molar ratio of 4:1) might be due to the formation of an inert layer on the catalyst surface by a large amount of water, which prevented the accessibility of reactant molecules to the active sites ^[12].

Fig. S7. Mutual solubility of H_2O_2 with cis-cyclooctene in the absence and presence of acetonitrile solvent.

Fig. S8. Profiles of cis-cyclooctene epoxidation on WO₃-SBA-15 at different control conditions (Original reaction conditions: 50 mg of catalyst, 0.3 mL of cis-cyclooctene, 0.3 mL of H_2O_2 (30 wt%), 70 °C and 10 mL of acetonitrile).

Fig. S9. The optimized structures of WO₃-SBA-15 (a1,a2), WO₃/SBA-15 (b1,b2) and Bulk-WO₃ (020) (c1,c2). The gold, blue and red represent Si, W and O atoms, respectively.

Fig. S10. Optimized structures of the adsorption of H_2O_2 (intermediate 2) (a), activation of H_2O_2 (TS1) (b), dissociation of H_2O_2 (intermediate 3) (c), the adsorption of ciscyclooctene (intermediate 4) (d), O transfer (TS2) (e) and desorption of ciscyclooctene oxide (intermediate 5) (f) on WO₃-SBA-15. The gold, red, blue, gray, and white spheres represent Si, O, W, C, and H atoms, respectively.

Reference

- S. Ren, Z. Xie, L. Cao, X. Xie, G. Qin and J. Wang, *Catal. Comm.*, 2009, 10, 464-467.
- H. Wang, L. Hou, C. Li, D. Zhang, P. Ma, J. Wang and J. Niu, *RSC Adv.*, 2017, 7, 36416-36420.
- D. Zhao, Z. Liang, H. Wang, K. Wang, D. Zhang, P. Ma, J. Wang and J. Niu, *Eur. J. Inorg. Chem.*, 2019, 2019, 523-528.
- 4. K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima and N. Mizuno, *Angew. Chem., Int. Ed.*, 2011, **50**, 12062-12066.
- 5. F. Somma, A. Puppinato and G. Strukul, Appl. Catal., A, 2006, 309, 115-121.
- A. Aronne, M. Turco, G. Bagnasco, G. Ramis, E. Santacesaria, M. Di Serio, E. Marenna, M. Bevilacqua, C. Cammarano and E. Fanelli, *Appl. Catal.*, A, 2008, 347, 179-185.
- S. Ghosh, S. S. Acharyya, T. Sasaki and R. Bal, *ACS Sustainable Chem. Eng.*, 2015, 3, 2823-2830.
- M. Zhang, V. Singh, X. Hu, X. Ma, J. Lu, C. Zhang, J. Wang and J. Niu, ACS Catal., 2019, 9, 7641-7650.
- 9. C. Tiozzo, C. Bisio, F. Carniato and M. Guidotti, Catal. Today, 2014, 235, 49-57.
- 10. A. Gallo, C. Tiozzo, R. Psaro, F. Carniato and M. Guidotti, J. Catal., 2013, 298, 77-83.
- 11. P. Carniti, A. Gervasini, C. Tiozzo and M. Guidotti, ACS Catal., 2014, 4, 469-479.
- P. Sudarsanam, N. K. Gupta, B. Mallesham, N. Singh, P. N. Kalbande, B. M. Reddy,
 B. F. Sels, *ACS Catal.*, 2021, **11**, 13603-13648.