Supplementary Information

Preparation of a low dielectric POSS/epoxy hybrid polymer without sacrificing the mechanical performance

Pengbo Zhang¹, Kangle Xue¹, Hailong Liu¹, Zidie Song¹, Xiaoxue Sun¹, Tongjie Yao^{*1} and Li Liu^{*12}

- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, PR China

*Corresponding authors: Tel & fax: +86 0451-8641371, +86 10 64425439. Email: <u>yaotj@hit.edu.cn</u> (Tongjie. Yao); <u>liuli@hit.edu.cn</u> (L. Liu);

Fig. **\$1.** MALDI-TOF-MS spectra of SHEP.

Fig. S2. Structures of the main chemicals.

Fig. S3. (a) HPLC spectrum of product after epoxidation reaction of eugenol; (b) FTIR spectra of eugenol and EUEP; (c) ¹H-NMR and (d) ¹³C-NMR spectra of EUEP.

Fig. S4. ¹³C-NMR spectra of (a) POSS-H and (b) SHEP samples.

Fig. S5. SEM images of the (a) original S4630, modified S4630: (b) non-ultrasonic treatment and (c) ultrasonic treatment.

Fig. S5 displays the SEM images without ultrasonic treatment of the S4630-KBM603. Compared to the ultrasonic treatment process, a large amount of KBM603 is grafted onto the surface of S4630-KBM603, and agglomeration even occurs without ultrasonic treatment. After the ultrasonic treatment, the grafting amount of KBM603 on the surface of S4630-KBM603 is decreased and is homogeneously distributed.

Fig. S6. Stress-strain curves of *x*%-S4630-KBM603@SHEP-MHHPA.

Fig. S7. FTIR spectra (epoxy before and after curing).

Fig. S8. Reaction mechanism diagram among epoxy groups, anhydride groups and amino groups.

Fig. S9. Water contact angle images of x%-S4630-KBM603@SHEP-MHHPA.

Systems	SHEP (g)	S4630-KBM603 (g)	MHHP A (g)	BDMA (g)
0%-S4630-KBM603@SHEP-MHHPA	10.00	0.00	4.64	0.10
10%-S4630-KBM603@SHEP- MHHPA	10.00	1.00	4.64	0.10
20%-S4630-KBM603@SHEP- MHHPA	10.00	2.00	4.64	0.10
30%-S4630-KBM603@SHEP- MHHPA	10.00	3.00	4.64	0.10
40%-S4630-KBM603@SHEP- MHHPA	10.00	4.00	4.64	0.10

 Table S1. Recipes of curing systems for x%-S4630-KBM603@SHEP-MHHPA

Samples	<i>2θ</i> (°)	d(Å)
POSS-H	7.86	11.23
<i>x</i> %-S4630-KBM603@SHEP-MHHPA	7.86	11.23

 Table S2. Average distance of the cured molecular chains.