Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Enhancing the activity and stability of the Cu₂O nanorods via coupling with NaNbO₃/SnS₂ heterostructure for photoelectrochemical water splitting

Shalini Tiwari¹, Priyanka Yadav¹ and Ashok K. Ganguli^{1,2}

¹Department of Chemistry, Indian Institute of Technology Delhi

²Department of Materials Science and Engineering, Indian Institute of Technology Delhi New Delhi 110016, India

* Author for correspondence

Email: <u>ashok@chemistry.iitd.ernet.in</u>

Figure S1 High-Resolution Transmission Electron Microscopy (HRTEM)

Figure S1 (a) TEM image and (b) HRTEM image of the NaNbO₃/SnS₂/Cu₂O heterostructure.

Table S1 Calculated conduction and valence band edge positions:

S.No.	Material	Valence band	Conduction Band	
S.No.	Ph	otocatalyst	Current density,	
			light-dark (mA/cm ²)	
1.	NaNbO ₃	2.98 eV	-0.48 eV	
2.	SnS_2	1.50 eV	- 0.96 eV	
				S2:
3.	Cu ₂ O	0.30 eV	-1.75 eV	Calo
				ulati
				on

of the electron affinity potential of the semiconductor materials by the following formula:

$$X = 0.5 (E_{EA} + E_{ion})$$

Here, E_{EA} = Energy of electron affinity and E_{ion} = First Ionization Energy

For NaNbO₃, $X_{Na} = 3.04 \text{ eV}$, $X_{Nb} = 4.035 \text{ eV}$ and $X_O = 8.05 \text{ eV}$, $X_{NaNbO3} = 5.73 \text{ eV}$

For Cu₂O, $X_{Cu} = 2.81 \text{ eV}$, $X_O = 8.05 \text{ eV}$, $X_{Cu2O} = 3.99 \text{ eV}$

For $SnS_2 X_{Sn} = 3.45 \text{ eV}$, $X_0 = 8.05 \text{ eV}$, $X_{SnS2} = 4.57 \text{ eV}$

Table S2 Calculated the difference in current density of the photocatalyst between light and dark irradiation.

1.	NaNbO ₃ /SnS ₂ /Cu ₂ O	6.50
2.	NaNbO ₃ /SnS ₂	0.84
3.	SnS_2	0.35
4.	NaNbO ₃	0.18
5.	Cu ₂ O	0.13

Figure S2 Linear Sweep Voltammetry plots of NaNbO₃/SnS₂/Cu₂O heterostructure.

Figure S3 Faradaic Efficiency of the photocatalyst of $NaNbO_3/SnS_2/Cu_2O$, $NaNbO_3/SnS_2$ and Cu_2O .

Figure S4 Mott-Schottky plot of SnS₂

