Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Phosphorus-doped copper sulfide microspheres with hollow

structure for high-performance sodium-ion batteries

Xinyue Tong, Zhen Wang, Zhaoyang Liu, Biao Yang, Zhenjiang Lu, Jing Xie, Jindou

Hu and Yali Cao*

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P.R. China.

*Corresponding author. Tel: +86-991-2111636; Fax: +86-991-2111636; Email: <u>caoyali523@163.com</u> (Y.L. Cao).

Materials Characterization:

The morphology, microstructure and phases of the synthesized products were characterized by SEM (S4800, Hitachi, Japan), TEM (SUPRA 55, Germany) equipped with energy dispersive X-ray spectroscopy (EDS) and XRD (Bruker D8 advance, Cu) with Cu K α of $\lambda = 0.15417$ nm. XPS was conducted using an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha) with a laser source of $\lambda = 532$ nm.

Electrochemical Measurement:

The working electrode slurry was a mixture of the active material, conductivity agent (ketjen black), and CMC binder with a weight ratio of 80:10:10 using deionized water as solvents. The slurry was uniformly pasted on a copper foil and dried in vacuum at 80°C for 12 h. The coin-type cells (2032) were assembled in an Ar-filled glove box (Mikrouna), where the concentrations of H₂O and O₂ were maintained below 1 ppm. Sodium metal was used as counter/reference electrode, glass fiber (GF/D) was used as the separator, and 1 M NaPF₆ dissolved in dimethoxyethane (DME) solution as the electrolyte. A LAND-CT2001A battery testing system was used to test galvanostatic charge/discharge at room temperature under different current densities within a potential range of 0.01–3.0 V (vs. Na/Na+). Cyclic voltammetry was conducted on an electrochemical workstation (Chenhua, Shanghai, China) in the voltage range of 0.01–3.0 V (vs. Na/Na+). Electrochemical impedance spectroscopy (EIS) was carried out by using electrochemical workstation (Chenhua, Shanghai, China) within the frequency range of 100 kHz to 0.01 Hz under open

circuit voltage.

GITT test information:

Use the following equation to calculate D_{Na^+} :

$$D_{Na^{+}} = \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_{\tau}}\right)^2$$

where m_B is the mass of active material, τ is the pulse duration, S is the active surface area, V_m and M_B represent the molar volume and molecular mass of carbon, respectively.

Fig. S1 SEM images of (a-b) 0.02P-CuS and (c-d) 0.04P-CuS.

Fig. S2 HRTEM images of (a) 0.03P-CuS and (b) CuS.

Fig. S3 Energy dispersive X-ray (EDX) spectrum of 0.03P-CuS.

Fig. S4 XRD pattern and Rietveld refinement.

Fig. S5 XPS survey spectra of CuS and 0.03P-CuS.

Fig. S6 High-resolution XPS spectra of (a-b) C 1s and (c-d) O 1s for 0.03P-CuS and

Fig. S7 N_2 adsorption-desorption isotherms of 0.03P-CuS.

Fig. S8 Pore size distributions of 0.03P-CuS.

CuS.

Fig. S9 SEM images of (a-b) 0.03P-CuS and (c-d) CuS after the electrochemical test.

Fig. S10 (a) XPS survey spectra, high-resolution XPS spectra of (b) P 2p, (c) Cu 2p and (d) S 2p of 0.03P-CuS after the electrochemical test.

Fig. S11 (a) CV curves of CuS at 0.2 mV s⁻¹; (b) Galvanostatic charge/discharge curves of CuS at 0.2 A g⁻¹; (c) EIS of the CuS electrode before and after 3 cycles.

Table S1 Comparison of the electrochemical performance between other reports and our work of P-CuS as anode materials for SIBs.

Anode materials	Rate performance	Long-term Cycling performance	Ref.
CuS	$\begin{array}{c} 514 \text{ mAh } g^{-1} \text{ at } 0.1 \text{ A } g^{-1} \\ 377.6 \text{ mAh } g^{-1} \text{ at } 0.5 \text{ A } g^{-1} \\ 337.3 \text{ mAh } g^{-1} \text{ at } 1 \text{ A } g^{-1} \\ 246.4 \text{ mAh } g^{-1} \text{ at } 5 \text{ A } g^{-1} \end{array}$	361.7 mAh g ⁻¹ after 100 cycles at 0.1 A g ⁻¹	[1]
CuS@N-C	320.2 mAh g^{-1} at 0.2 A g^{-1} 316.2mA h g^{-1} at 1 A g^{-1} 307.8 mAh g^{-1} at 2 A g^{-1} 259.4 mAh g^{-1} at 5 A g^{-1}	300.2 mAh g^{-1} after 1200 cycles at 5 A g^{-1}	[2]
CuS-Cu@CNTs	$\begin{array}{l} 523.4 \text{ mAh } g^{-1} \text{ at } 0.08 \text{ A } g^{-1} \\ 478.9 \text{ mAh } g^{-1} \text{ at } 0.4 \text{ A } g^{-1} \\ 464.3 \text{ mAh } g^{-1} \text{ at } 1.2 \text{ A } g^{-1} \\ 454.8 \text{mAh } g^{-1} \text{ at } 2 \text{ A } g^{-1} \\ 447.3 \text{ mAh } g^{-1} \text{ at } 2.4 \text{ A } g^{-1} \end{array}$	512.5 mAh g ⁻¹ after 1100 cycles at 2.4 A g ⁻¹	[3]
NaCuS	262.0 mAh g^{-1} at 0.1 A g^{-1} 121.7 mAh g^{-1} at 2 A g^{-1}	210.9 mAh g^{-1} after 500 cycles at 1 A g^{-1}	[4]

CuS HNs	388.1 mAh g^{-1} at 1 A g^{-1} 321.4 mAh g^{-1} at 3 A g^{-1} 258.2 mAh g^{-1} at 10 A g^{-1} 193.4 mAh g^{-1} at 20 A g^{-1}	250.1 mAh g ⁻¹ after 2000 cycles at 20 A g ⁻¹	[5]
CuS NWs@NC	546.2 mAh g^{-1} at 0.5 A g^{-1} 496.8 mAh g^{-1} at 1A g^{-1} 402.8 mAh g^{-1} at 5 A g^{-1} 350.0 mAh g^{-1} at 10 A g^{-1} 294.4 mAh g^{-1} at 20 A g^{-1}	216.7 mAh g ⁻¹ after 10000 cycles at 20 A g ⁻¹	[6]
ZnS/CuS@C	$\begin{array}{l} 454.4 \text{ mAh } \mathrm{g}^{-1} \text{ at } 0.1 \text{ A } \mathrm{g}^{-1} \\ 373.6 \text{ mAh } \mathrm{g}^{-1} \text{ at } 1 \text{ A } \mathrm{g}^{-1} \\ 338.2 \text{ mAh } \mathrm{g}^{-1} \text{ at } 5 \text{ A } \mathrm{g}^{-1} \\ 298.9 \text{ mAh } \mathrm{g}^{-1} \text{ at } 10 \text{ A } \mathrm{g}^{-1} \end{array}$	282.7 mAh g^{-1} after 1750 cycles at 10 A g^{-1}	[7]
CuS@CuSe	513.4 mAh g^{-1} at 0.2 A g^{-1} 349.1mAh g^{-1} at 20 A g^{-1}	303.1 mAh g^{-1} after 1500 cycles at 20 A g^{-1}	[8]
CuS@CoS ₂	$\begin{array}{l} 570 \text{ mAh } g^{-1} \text{ at } 0.2 \text{ A } g^{-1} \\ 483 \text{ mAh } g^{-1} \text{ at } 0.5 \text{ A } g^{-1} \\ 360 \text{ mAh } g^{-1} \text{ at } 2 \text{ A } g^{-1} \\ 304 \text{ mAh } g^{-1} \text{ at } 5 \text{ A } g^{-1} \end{array}$	416 mAh g^{-1} after 500 cycles at 0.5 A g^{-1}	[9]
CuS48	329.3 mAh g^{-1} at 0.1 A g^{-1} 228.6 mAh g^{-1} at 0.5 A g^{-1} 195.7 mAh g^{-1} at 1 A g^{-1} 164.6 mAh g^{-1} at 2 A g^{-1}	132.6 mAh g^{-1} after 5000 cycles at 5 A g^{-1}	[10]
PNL-CuS	522 mAh g^{-1} at 0.1 A g^{-1} 317 mAh g^{-1} at 20 A g^{-1}	420 mAh g^{-1} after 1000 cycles at 5 A g^{-1}	[11]
CuS	549 mAh g ⁻¹ at 1 A g ⁻¹ 268 mAh g ⁻¹ at 100 A g ⁻¹	517 mAh g^{-1} after 2000 cycles at 5 A g^{-1}	[12]
CuS-150	$\begin{array}{l} 470.6 \text{ mAh } g^{-1} \text{ at } 1 \text{ A } g^{-1} \\ 386 \text{ mAh } g^{-1} \text{ at } 5 \text{ A } g^{-1} \\ 254.7 \text{ mAh } g^{-1} \text{ at } 20 \text{ A } g^{-1} \end{array}$	213mAh g^{-1} after 2000 cycles at 15 A g^{-1}	[13]

	547.2 mAh g^{-1} at 0.2 A g^{-1}		
P-CuS	504.3mAh g^{-1} at 1 A g^{-1}	442.1 mAh g ⁻¹ after 2000	This work
	473.3 mAh g^{-1} at 5 A g^{-1}	cycles at 10 A g^{-1}	
	453.9 mAh g^{-1} at 10 A g^{-1}		

References

1. L. Wu, J. Gao, Z. Qin, Y. Sun, R. Tian, Q. Zhang and Y. Gao, *J. Power Sources* 2020, **479**, 228518.

 X. Liu, X. Li, X. Lu, X. He, N. Jiang, Y. Huo, C. Xu and D. Lin, *J. Alloys Compd.* 2021, 854, 157132.

3. Y.-Y. Sun, Y. Li, L.-M. Sheng, T.-L. Lv, R. Guo, T.-R. Yang, Q.-S. Zhang and J.-Y. Xie, *Chem. Eng. J.* 2021, **414**, 128732.

4. Y. Sun, Z. Yu, Z. Chen, H. Wang, P. Wang, S. Han, S. Wu, W. Lu and J. Wang, *Nano Energy* 2021, **84**, 105875.

5. Y. Hu, L. Zhang, J. Bai, F. Liu, Z. Wang, W. Wu, R. Bradley, L. Li, H. Ruan and S. Guo, *ACS Appl. Energy Mater.* 2021, **4**, 8901-8909.

6. D. Zhao, M. Yin, C. Feng, K. Zhan, Q. Jiao, H. Li and Y. Zhao, *ACS Sustain*. *Chem. Eng.* 2020, **8**, 11317-11327.

7. W. Zhao, L. Gao, L. Yue, X. Wang, Q. Liu, Y. Luo, T. Li, X. Shi, A. M. Asiri and X. Sun, *J. Mater. Chem. A* 2021, **9**, 6402-6412.

W. Zhao, X. Wang, X. Ma, L. Yue, Y. Ren, T. Li, J. Xia, L. Zhang, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. M. Asiri and X. Sun, *J. Mater. Chem. A* 2021, 9, 27615-27628.

9. Y. Fang, B. Y. Guan, D. Luan and X. W. Lou, *Angew. Chem. Int. Ed.* 2019, **58**, 7739-7743.

10. C. An, Y. Ni, Z. Wang, X. Li and X. Liu, *Inorg. Chem. Front.* 2018, **5**, 1045-1052.

D. Yu, M. Li, T. Yu, C. Wang, Y. Zeng, X. Hu, G. Chen, G. Yang and F. Du, J. Mater. Chem. A 2019, 7, 10619-10628.

12. H. Kim, M. K. Sadan, C. Kim, S.-H. Choe, K.-K. Cho, K.-W. Kim, J.-H. Ahn and

H.-J. Ahn, J. Mater. Chem. A 2019, 7, 16239-16248.

13. L. Zhang, Y. Hu, Y. Liu, J. Bai, H. Ruan and S. Guo, Ceram. Int. 2021, 47, 14138-14145.