Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information for New Journal of Chemistry

Meso-Carbazole decorated BODIPYs - an Electron Donor-Acceptor System with Excellent FluoroSolvato/Vapochromic Behavior, Aggregation-Induced Emission and Antileishmanial Activity

Diana Mathew,^{a,c} Santanu Sasidharan,^b Prakash Saudagar,^b Subramaniam Sujatha,^{a*} and Pattiyil Parameswaran^{c*}

^aBioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, India-673 601.

^bDepartment of Biotechnology, National Institute of Technology Warangal, Warangal, India-506004

^cTheoretical and Computational Chemistry Laboratory, Department of Chemistry, NIT Calicut, Kozhikode, India-673601.

Figure S1. FTIR spectra of *meso*-carbazole substituted BODIPY (C1) and the corresponding brominated derivatives (C2 and C3) at room temperature.

Figure S2. ¹H NMR spectra (500 MHz, CDCl₃) of (a) **C1**, (b) **C2** and (c) **C3** recorded at room temperature. Peaks marked with an asterisk (*) at 7.26 ppm indicate the residual CDCl₃.

Figure S3. ¹³C NMR spectra (500 MHz, CDCl₃) of (a) **C1** (b) **C2** and (c) **C3** recorded at room temperature.

Figure S4.	HRMS m	nass spectra	of <i>meso-</i> c	carbazole	substituted	BODIPY	s (a) C1 ,	(b) C2 ,	and
(c) C3 reco	orded in m	ethanol.							

Parameters	C1
Molecular Formula	${\rm C}_{23}{\rm H}_{18}{\rm B}{\rm F}_{2}{\rm N}_{3}$
Formula Number	385.21
CCDC number	2235136
Temperature/K	296 K
Crystal system	Monoclinic
Space group	P 21/c
Λ	0.1073
a (Å)	13.8926(4)
b (Å)	18.2905(10)
c (Å)	7.7364(7)
α (degree)	90
β(degree)	99.426(2)
γ(degree)	90
Volume/ (Å ³)	1939.3(2)

Table S1.	The cr	ystallogra	phic data	of BODIPY	Y C1
-----------	--------	------------	-----------	-----------	------

Z	4
μ / mm ⁻¹	0.092
Density _{calcd} / mg m ⁻³	1.319
F (000)	800.0
θ range (°)	2.227 to 24.994°.
R _{int}	0.0487
Data / restraints /parameters	3424 / 0 / 264
GOF on F2	1.004
$R^{a}, wR^{b}[I > 2\sigma(I)]$	$R_1 = 0.0487,$
1 2 2 2 2 2	$wR_2 = 0.1089$
R_1, wR_2 (all data)	$R_1 = 0.1193,$
1 2	$wR_2 = 0.1479$

Table S2. Selected bond lengths (Å) and bond angles (degree) of BODIPY C1

Parameters	C1
C Bod-C Aryl	1.472(3)
B-N1	1.521(4)
N1-B-N2	106.0(2)
F1-B-F2	108.5(2)
$\Phi_{ m Aryl}$	46.0(3)
Φ_{pyrrole}	178.5(2)

Photophysical Data

Table S3. Photophysical properties of carbazole.

Compound	Dielectric Constant	Solvent	λ_{max} (nm)	log ɛ	λ_{em} (nm)	ф _f а	$\Delta v (\mathbf{nm})^{b}$
Carbazole	1.9	Hexane	293	3.13	360	0.20	18
	2.38	Toluene	292	3.10	358	0.21	16
	4.81	Chloroform	292	3.12	368	0.24	26
	6.02	Ethyl Acetate	290	3.14	366	0.26	27
	7.58	THF	289	3.15	365	0.25	22
	17.9	Isopropyl	290	3.16	360	0.24	20
		alcohol					
	20.7	Acetone	289	3.14	359	0.27	18
	24.5	Ethanol	293	3.13	358	0.28	16
	32.7	Methanol	290	3.12	360	0.30	19
	37.5	Acetonitrile	293	3.11	362	0.25	21
	46.7	DMSO	290	3.13	361	0.27	19

^aFluorescence quantum yield (Φ_f) was calculated using the standard fluorescein in aqueous NaOH (0.1 N) ($\Phi_f = 0.90$); ^bStokes shift.

Table S4. Photophysical properties of *meso*-carbazole substituted BODIPY C1 and its brominated derivatives C2 and C3.

BODIPY	Dielectric Constant	Solvent	λ_{max} (nm)	log ε	λ _{em} (nm)	ф _f а	Q ^b (%)	Δυ (nm) ^c	$\Delta \mathbf{f}^{d}$	kr ^e (10 ⁹ s ⁻¹)	k _{nr} ^f (10 ⁹ s ⁻¹)	τ ^g (ns)
C1	1.9	Hexane	499	4.49	507	0.51	-	8	0.0012	2.55	2.45	0.2
	2.38	Toluene	498	4.53	520	0.53	-	22	0.014	-	-	-
	4.81	CHCl ₃	498	4.42	578	0.62	-	80	0.1447	-	-	-

	6.02	Ethyl Acetate	497	4.15	610	0.32	-	113	0.2005	-	-	-
	7.58	THF	496	4.38	607	0.21	16	111	0.2107	0.31	1.21	0.65 9
	17.9	Isopropyl alcohol	495	4.12	623	0.05	79	128	-	-	-	-
	20.7	Acetone	496	4.23	634	0.05	81.4	138	0.2846	0.04 9	0.93	1.02
	24.5	Ethanol	494	4.22	510, 641	0.04	85.7	147	0.2884	-	-	-
	32.7	Methanol	493	4.51	507, 652	0.02	93.3	159	0.3086	-	-	-
	37.5	Acetonitrile	494	4.65	506, 659	0.03	88	165	0.3055	-	-	-
	46.7	DMSO	493	4.43	507, 675	0.02	92.5	182	0.26	0.00 6	0.31	3.14
C2	1.9	Hexane	516	4.12	527	0.40	-	11	0.0012	2.7	4.09	0.14 7
	2.38	Toluene	516	4.35	548	0.42	-	32	0.0126	-	-	-
	4 81	Chloroform	515	4 24	587	0.51	-	72	0 1 4 4 7	-	-	-
	6.02	Ethyl Acetate	514	4.44	619	0.36	-	105	0.2005	-	-	-
	7.58	THF	513	4.18	618	0.46	-	105	0.2107	1.6	1.9	0.27 5
	17.9	Isopropyl alcohol	511	4.11	631	0.05	79.1	120	-	-	-	-
	20.7	Acetone	512	4.21	646	0.05	81.4	134	0.2846	0.03 7	0.71	1.33
	24.5	Ethanol	510	4.30	520, 658	0.05	82.1	148	0.2884	-	-	-
	32.7	Methanol	510	4.23	525, 667	0.02	93.3	157	0.3086	-	-	-
	37.5	Acetonitrile	507	3.99	523, 670	0.02	92	163	0.3055	-	-	-
	46.7	DMSO	508	4.28	527, 676	0.01	96.2	168	0.26	0.00 5	0.49	2.0
C3	1.9	Hexane	533	3.98	549	0.11	45	16	0.0012	0.01 7	1.76	0.65 9
	2.38	Toluene	532	4.19	550	0.08	61.9	18	0.0126	-	-	-
	4.81	Chloroform	534	4.32	551	0.06	75	19	0.1447	-	-	-
	6.02	Ethyl Acetate	529	4.46	559	0.05	80.7	30	0.2005	-	-	-
	7.58	THF	528	3.97	556	0.03	88	28	0.2107	0.04 2	1.38	0.69 8
	17.9	Isopropyl alcohol	527	4.10	557	0.00 2	99.1	30	-	-	-	-
	20.7	Acetone	526	4.11	553	0.01	96.4	27	0.2846	0.01 7	1.76	0.56 2
	24.5	Ethanol	525	4.26	554	0.02	93.3	29	0.2884	-	-	-
	32.7	Methanol	527	4.50	548	0.00 2	99.2	21	0.3086	-	-	-
	46.7	DMSO	526	4.36	557	0.00	99.6	31	0.3055	0.00 16	1.63	0.61 2

^aFluorescence quantum yield (Φ_f) was calculated using the standard fluorescein in aqueous NaOH (0.1 N) (Φ_f =

0.90); ^bQuenching Efficiency (Q): (*Phys. Chem. Chem. Phys.*, 2018, **20**, 27418); $Q = \frac{\Phi_{(\text{Ref})} - \Phi_{(\text{BODIPY})}}{\Phi_{(\text{Ref})}}$

^eStokes shift; ^dOrientational polarizability: (*J. Mater. Chem. C*, 2017, **5**, 6136-6143; *J. Chem. Phys.*, 2006, **125**, 054513). ^eRadiative ($k_r = \Phi_f / \tau$) and ^fnon-radiative ($k_{nr} = (1 - \Phi_f) / \tau$) decay rates; ^gfluorescence lifetime.

Figure S5. (a) Normalized absorption (10⁻⁵ M) and (b) emission spectra (10⁻⁷ M, λ_{ex} = 480 nm) of *meso*-carbazole appended BODIPYs **C1**, **C2**, and **C3** in hexane at room temperature; (c) Solid-state fluorescence spectra of **C1**, **C2**, and **C3** (λ_{ex} = 500 nm).

Theoretical Calculations

Figure S6. MESP of *meso*-carbazole substituted BODIPY **C1** calculated at M06/def2-TZVPP//BP86/def2-TZVPP level of theory.

Table S5. ESP values (M06/def2-TZVPP//BP86/def2-TZVPP) in kcal/mol at the Van derWaals surface of selected atoms in *meso*-carbazole substituted BODIPY C1.

Atoms	ESP (kcal/mol)									
Carbazole Car	Carbazole Carbon atoms									
C2	-4.50									
C4	-7.14									
C6	-8.38									
C8	-7.08									
C13	-0.89									
C15	-3.40									
C18	-3.66									
Pyrrole Carb	oon atoms									
C22 (β-pyrrole)	-8.15									
C24 (β-pyrrole)	-10.04									
C26 (<i>a</i> -pyrrole)	-10.32									

Table S6. Computed absorption properties of meso-carbazole BODIPY in the ground state in

DMSO	using	PCM	solvent	model	at M06/	def2TZ	VPP//E	3P86/de	ef2-TZV	VPP.
	0									

BODIPY	Excite	Oscillato	Excitation	λ (nm)	Transition	Coefficie	Percentage
	d state	r	energy (eV)			nt of	contribution
		strength				transition	
<u>C1</u>	1	(1)	2.52	400.47		0.000	07.70
		0.2563	2.52	490.47	HOMO→LUMO	0.6990	97.72
$\lambda_{exp} \equiv$	2	0.1309	2.82	439.08	HOMO-2→LUMO	0.4960	49.20
495 1111	2	0.2700	2.00	10(01	HOMO-1→LUMO	0.4944	48.88
	3	0.3788	2.90	426.91	HOMO-2→LUMO	0.4940	48.80
		0.0.570	2.12	244.02	$HOMO-I \rightarrow LUMO$	-0.4944	48.88
	4	0.0658	3.63	341.02	HOMO-4→LUMO	0.6577	86.51
					$HOMO-5 \rightarrow LUMO$	-0.2264	10.25
	5	0.0993	3.81	325.18	HOMO-5→LUMO	0.1480	4.38
					HOMO-4→LUMO	0.2047	8.38
					HOMO-3→LUMO	0.5334	56.90
					HOMO→LUMO+1	-0.3551	25.21
C2	1	0.2626	2.44	508.05	HOMO→LUMO	0.6990	97.72
	2	0.1473	2.72	458.44	HOMO-2→LUMO	0.4840	46.85
$\lambda_{exp} =$					HOMO-1 →LUMO	0.5057	51.14
508 nm	3	0.3722	2.79	443.32	HOMO-1 →LUMO	0.5062	51.24
					HOMO-2→LUMO	-0.4788	45.84
	4	0.1415	3.50	353.71	HOMO-4→LUMO	-0.1023	2.09
					HOMO-3→LUMO	0.2212	9.78
					HOMO-2→LUMO	0.6487	84.16
					HOMO→LUMO	-0.1029	2.11
	5	0.0448	3.70	334.51	HOMO-4→LUMO	0.6923	95.85
C3	1	0.2732	2.35	526.87	HOMO→LUMO	0.7007	98.19
$\lambda_{exp} =$	2	0.1337	2.63	470.15	HOMO-2→LUMO	0.4966	49.32
526 nm					HOMO-1→LUMO	0.4953	49.06
	3	0.4120	2.68	461.49	HOMO-4→LUMO	-0.1042	2.17
					HOMO-1→LUMO	0.4945	48.90
					HOMO-2→LUMO	-0.4919	48.39
	4	0.0786	3.42	361.64	HOMO-5→LUMO	0.2361	11.14
					HOMO-3→LUMO	0.6546	85.70
	5	0.1795	3.47	356.28	HOMO-4→LUMO	0.6890	94.94
					HOMO-1→ LUMO	-0.1039	2.15

BODIPY	Excit	Oscillator	Excitatio	λ (nm)	Transition	Coefficien	Percentage
	ed	strength	n energy			t of	contribution
	state	(f)	(eV)			transition	
C1	1	0.0008	2.33	530.37	HOMO-3 →LUMO	-0.1076	2.31
					HOMO→LUMO	0.6870	94.3
	2	0.0757	2.7	457.79	HOMO-2→LUMO	0.3064	18.7
					HOMO-1→LUMO	0.6227	77.5
					HOMO→LUMO	-0.1155	2.6
	3	0.4326	2.92	424.33	HOMO-4→LUMO	-0.1189	2.8
					HOMO-2→LUMO	0.6235	77.7
					HOMO-1→LUMO	-0.309	19.09
C2	1	0.0006	2.22	557.56	HOMO→LUMO	0.6878	94.6
	2	0.0654	2.59	476.99	HOMO-2→LUMO	0.2640	13.9
					HOMO-1 →LUMO	0.6423	82.5
					HOMO→LUMO	-0.1109	2.4
	3	0.4432	2.79	443.57	HOMO-3→LUMO	-0.1139	2.5
					HOMO-2 →LUMO	0.6409	82.1
					HOMO-1 →LUMO	-0.2643	13.9
C3	1	0.0006	2.11	587.5	HOMO→LUMO	0.6884	94.7
	2	0.0555	2.48	497.99	HOMO-2→LUMO	-0.2213	9.7
					HOMO-1→LUMO	0.6588	86.8
					HOMO→LUMO	0.1074	2.3
	3	0.4723	2.67	463.56	HOMO-5→LUMO	0.1058	2.2
					HOMO-2→LUMO	0.6574	86.4
					HOMO-1→LUMO	0.2220	9.8

Table S7. Computed absorption properties of *meso*-carbazole BODIPY (dihedral angle = 90°) in DMSO using PCM solvent model at M06/def2TZVPP//BP86/def2-TZVPP.

Figure S7. Important electronic transitions computed for *meso*-carbazole BODIPY derivatives (dihedral angle between BODIPY and carbazole planes fixed to 90°) using TDDFT at M06/def2TZVPP level of theory in DMSO using PCM solvent model. Eigenvalues are given in eV. The surfaces are plotted at the iso-surface value of 0.03. The corresponding wavelength (λ) in nm and oscillator strength (f) is given.

Figure S8. Selected molecular orbitals and energy gap of C1, C2, and C3 in DMSO. Eigenvalues are given in eV.

Figure S9. The electronic transitions in (a) **C2**, and (b) **C3**, calculated using TDDFT at the M06/def2TZVPP//BP86/def2-TZVPP level of theory, indicating intramolecular excitation energy transfer in **C2** and **C3**. Eigenvalues values are given in eV.

Solvatochromism

Figure S10. Fluorescence spectrum of (a) **C1** (b) **C2** (c) **C3** (10^{-7} M, $\lambda_{ex} = 480$ nm) in solvents of different polarity at room temperature.

Figure S11. Photograph of (a) C2 and (b) C3 in various solvents under UV irradiation.

Figure S12. The plot of dielectric constant vs Stokes shift (nm) for (a) C2 and (b) C3.

Figure S13. The fluorescence decay profiles of (a) C2 and (b) C3 (λ_{ex} = 460 nm) in different solvents. The instrument response function, (IRF) is shown in the blue line in C2 and a black line in C3. Residuals obtained from the fit of (c) C1, (d) C2 and (e) C3 in THF are given at the bottom.

Table S8. Fitted decay time (τ_i), pre-exponential coefficients (α_i), and chi-squared (χ^2) values were obtained by fitting the emission decays ($\lambda_{ex} = 460 \text{ nm}$).

	C1							
Solvent	α_1	α2	α3	τ_1	τ_2	τ_3	χ^2	τ (ns)
THF	0.14947	0.178944	-	2.08E-10	7.62E-10		1.35	0.65
Hexane	6.43E-03	2.852009	6.04E-04	1.04E-09	8.09E-11	6.11E-09	1.10	0.2
Acetone	0.190875	-	-	1.02E-09			1.30	1.02
DMSO	0.118504	-	-	3.14E-09			1.10	3.14
C2								
THF	0.7845303	5.85E-03		1.94E-10	1.60E-09		1.22	0.27
Hexane	8.32E+00	5.61E-02	1.34E-03	4.57E-11	7.23E-10	3.42E-09	1.32	0.14
Acetone	0.006429235	2.852009	0.000603659	1.04E-09	8.0922E-11	6.10806E-09	1.22	1.33
DMSO	6.52E-02	0.111928		8.07E-10	1.49E-09		1.15	2.0
C3								
Acetone	0.4492571	3.90E-02	-	2.65E-10	1.27E-09	-	1.43	0.56
DMSO	1.08E+00	2.20E-02	-	1.39E-10	2.13E-09	-	1.03	0.61
Hexane	0.14947	0.178944	_	2.08E-10	7.62E-10	-	1.25	0.65
THF	3.40E-01	2.99E-02	_	3.55E-10	1.58E-09	-	1.05	0.69

Figure S14. Lippert-Mataga plot: dependence of the Stokes shift on the solvent polarity function, Δf for (a) C2 and (b) C3.

Figure S15. The direction of dipole moment in the optimized ground state geometry of C1, C2, and C3.

Figure S16. (a) Emission spectra of **C1** in the THF/hexane mixture with different hexane fractions (10⁻⁷ M, $\lambda_{exc} = 480$ nm); (b) Emission spectra of **C1** in the ethanol/glycerol mixture with different glycerol fractions (10⁻⁷ M, $\lambda_{exc} = 480$ nm).

Singlet Oxygen Generation: Chemical Quenching with DPBF

Figure S17. The singly occupied molecular orbitals and the energy gap between SOMO and SOMO-1 orbitals in *meso*-carbazole BODIPY are given. The mechanism of singlet oxygen generation is illustrated. Eigenvalues are given in eV. The surfaces are plotted at the iso-surface value of 0.03.

Aggregation-Induced Emission Studies

Figure S18. (a) Absorption spectra of **C2** in DMSO-H₂O mixtures with different water fractions (10⁻⁵ M); (b) Fluorescence spectra of **C2** in DMSO-H₂O mixtures with different water fractions (10⁻⁶ M, λ_{exc} = 480 nm) (Inset: photograph of **C2** in DMSO/H₂O mixture (f_w = 0% and 95%,), taken under 365 nm excitation of a UV lamp).

Figure S19. (a) Absorption spectra of **C3** in DMSO-H₂O mixtures with different water fractions (10⁻⁵ M); (b) Fluorescence spectra of **C3** in DMSO-H₂O mixtures with different water fractions (10⁻⁶ M, λ_{exc} = 480 nm) (Inset: photograph of **C3** in DMSO/H₂O mixture (f_w = 0% and 95%,), taken under 365 nm excitation of a UV lamp).

Table S9. Calculated Φ_f in the aggregated state and AIE factor of *meso*-carbazole substituted BODIPYs

BODIPY	Φ _f in the aggregated state	a AIE
C1	0.52	26
C2	0.21	21
C3	0.015	15

Figure S20. DLS images of (a) C1 (2.88×10^{-5} M) and (b) C2 (2.39×10^{-5} M) (c) C3 (2.88×10^{-5} M) in 7:3 water-DMSO fraction.

Figure S21. Plot between the dihedral angle of rotation between carbazole and BODIPY in **C1** vs energy (kcal/ mol) of rotation calculated at BP86/Def2-TZVPP level of theory.