Cobalt Incorporation and MoS₂-NiS₂ Heterostructure

Synergistic Improving Full Water Electrolysis Efficiency

Minyu Wu, Xiangdong Meng, Min Zhou*, Yuxue Zhou*

College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China.

E-mail: minzhou@yzu.edu.cn, yxzhou@yzu.edu.cn.

Fig. S1. Raman spectrum of $Co-MoS_2/NiS_2/CP$.

Fig. S2. XRD patterns of Co-MoS₂/NiS₂/CP and NiS₂/MoS₂/CP.

Fig. S3. XRD patterns of NiS₂/CP sample.

Fig. S4. The lattice distances of MoS_2 in HRTEM image, d=0.62nm.

Fig. S5. The lattice distances of NiS_2 in HRTEM image, d=0.28nm.

Fig. S6. EDS spectra of $Co-MoS_2/NiS_2/CP$ sample.

Fig. S7. XPS spectra of Co-MoS₂/NiS₂/CP and NiS₂/MoS₂/CP catalyst.

Fig. S8. LSV curve of pure MoS_2 in 1.0 M KOH for HER.

Fig. S9. The cyclic voltammetry (CV) curves of (a) Co-MoS₂/NiS₂/CP, (b) $NiS_2/MoS_2/CP$ and (c) NiS_2/CP at various scan rates for the calculation of electrochemical double-layer capacitances.

Fig. S10. TOF values of Co-MoS $_2$ /NiS $_2$ /CP, MoS $_2$ /NiS $_2$ /CP and NiS $_2$ /CP for HER.

Fig. S11. (a) XRD, (b) Raman, and (c) Mo 3d, (d) Ni 2p, (e) S 2p, (f) Co 2p XPS spectra of $Co-MoS_2/NiS_2/CP$ after 24h HER test.

Fig. S12. TOF values of Co-MoS $_2$ /NiS $_2$ /CP, MoS $_2$ /NiS $_2$ /CP and NiS $_2$ /CP for OER.

Fig. S13. (a) XRD, (b) Raman, and (c) Ni 2p, (d) Co 2p, (e) Mo 3d, (f) S 2p, (g) O 1s XPS spectra of Co-MoS₂/NiS₂/CP after 24h OER test.

Catalysts	Electrolyte	$\eta_{j=10 mA cm}^{-2}(mV)$	$TOF (H_2 S^1)$	Ref
Co-MoSy/NiSy/CP	1.0M KOH	109	1.47 H ₂ s ⁻¹ at 350 mV	This work
MoS ₂ /NiS ₂ /CP	1.0M KOH	129	0.91 H ₂ s ⁻¹ at 350 mV	This work
NiS ₂ /CP	1.0M KOH	311	0.62 H ₂ s ⁻¹ at 350 mV 0.146	This work
Co-Ni ₃ N	1.0 M KOH	194	H ₂ s ⁻¹ at 290 mV 0.093 H ₂	1
NiCoN/C	1.0 M KOH	103	s ⁻¹ at 200 mV 0.55 H ₂ s ⁻¹ at	2
Co-NiS ₂ NSs	1.0 M KOH	80	100 mV 5.89 H ₂ s ⁻¹ at	3
Co ₁ /PCN	0.5 M H ₂ SO ₄	151	100 mV 6.5 H ₂ s ⁻¹ at	4
CoN _x /C	$0.5 M H_2 SO_4$	133	200 mV	5

Table S1. The HER performance of Co-MoS₂/NiS₂/CP compared with other catalysts

Calculated on the basis of the assumption of 100% participation of all Ni active site in the HER.

Table S2. The OER performance of Co-MoS₂/NiS₂/CP compared with other catalysts

Catalysts	Electrolyte $\eta_{j=}$	$10 mA cm^{-2} (mV)$	$TOF(O_2 S^1)$	Ref
Co-MoS ₂ /NiS ₂ /CP	1.0M KOH	323	0.159 O ₂ s ⁻¹ at 350 mV ^a 0.092	This work
MoS ₂ /NiS ₂ /CP	1.0M KOH	351	$O_2 \ s^{-1} \ at \ 350 \ mV^a \ 0.071 \ O_2 \ s^{-1}$	This work
NiS ₂ /CP	1.0M KOH	397	$at 350 mV^{a}$ 0.036 $O_{2} s^{-1} at$	This work
α-Ni(OH) ₂ hollow spheres	1.0 M KOH	331	$350 mV^a 0.003$ $O_2 s^{-1} at 350$	6
β-Ni(OH)2 hexagonal NPs	1.0 M KOH	444	$mV^a 0.14 O_2 s^{-1}$ at 300 mV ^b	6
Fe,Ni-CoS2	1.0 M KOH	242	4.71 $O_2 s^{-1} at$ 1.45 V^b	7
β-Ni(OH) 2 nanoburls	1.0 M KOH	300		8

NiFe-LDH-V	1.0 M KOH	$- \frac{0.165 \text{ O}_2 \text{ s}^{-1} \text{ at}}{1.50 \text{ V}^{\text{b}}} \qquad 9$
------------	-----------	--

^aCalculated on the basis of the assumption of 100% participation of all Ni active site in the OER. ^b Calculated using the ORR current from the RRDE experiment.

References

- 1 X. Q. Zheng, L. S. Peng, L. Li, N. Yang, Y. J. Yang, J. Li, J. C. Wang and Z. D. Wei, *Chem. Sci.*, 2018, **9**, 1822-1830.
- 2 J. X. Feng, J. Q. Wu, Y. X. Tong and G.-R. Li, J. Am. Chem. Soc., 2018, 140, 610-617.
- 3 J. Yin, J. Jin, H. Zhang, M. Lu, Y. Peng, B. Huang, P. Xi and C. H. Yan, *Angew. Chem. Int. Ed.*, 2019, **58**, 18676-18682.
- 4 L. Zeng, K. Sun, Z. Yang, S. Xie, Y. Chen, Z. Liu, Y. Liu, J. Zhao, Y. Liu and C. Liu, *J. Mater. Chem. A*, 2018, **6**, 4485-4493.
- 5 J. Dong, F. Q. Zhang, Y. Yang, Y. B. Zhang, H. He, X. Huang, X. Fan and X. M. Zhang, *Appl. Catal. B*, 2019, **243**, 693-702.
- 6 M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang and Y. Yan, J. Am. Chem. Soc., 2014, **136**, 7077-7084.
- W. Peng, A. Deshmukh, N. Chen, Z. Lv, S. Zhao, J. Li, B. Yan, X. Gao, L. Shang,
 Y. Gong, L. Wu, M. Chen, T. Zhang and H. Gou, *Acs Catal.*, 2022, 12, 3743-3751.
- 8 S. Anantharaj, P. E. Karthik and S. Kundu, *Catal. Sci. Technol.*, 2017, 7, 882-893.
- 9 D. Chen, J. Qiu, X. Chen, S. Chen, J. Zhang and Z. Peng, *J. Phys. Chem. Lett.*, 2023, **14**, 2148–2154.