Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Solid ionic liquids liquid with macro-microporous structure for efficient heterogeneous macromolecular catalysis

Jiao Rong Li, #a Yu Chen Han, #a Wen Long Xue, a, d Zhong Feng Li, *a Yu Heng Deng, *a and

Chong-Qing Wan*a, b, c

^a Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.

^b Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of

Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^d Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227 Dortmund, Germany

[#] These authors contributed equally to this work

Experimental

Reagents: All chemicals were obtained from commercial sources and used without further purification. 4-Carboxyphenylboronic acid ($C_7H_7BO_4$, Energy Chemical Company, 98%), 4-bromo-3-methylbenzoic acid($C_8H_7BrO_2$, Energy Chemical Company, 98%) Zirconium tetrachloride (Cl_4Zr , Energy Chemical Company, 99%), Imidazole ($C_3H_4N_2$, TCI Shanghai, 98%), 1,3-propanesultone ($C_3H_6O_3S$, J&K Scientific Ltd., 99%), Methanesulfonic acid (CH_3SO_3H , Energy Chemical Company, 99%) and ethanol (C_2H_5OH , Sinopharm Chemical Reagent Beijing Co. Ltd., >99.8%) all were used as received.

Figure S1. Schematic synthesis of micro structure of UiO-67. (a) H_2BPDC ligand. (b) octahedral cage, (c) tetrahedral cage and (d) UiO-67. Red ball is oxygen, grey ball is carbon.

Figure S2. Molecular size data of dodecanoic acid (top) and myristic acid (bottom).

Table S1. BET, po	re volume, pore size o	f UiO-67-MIMS, M	lacro-UiO-67-MIMS and		
Macro-UiO-67-ILs					
Material		N ₂ adsorption data			
	BET (m ² /g)	Pore volume	Pore size (Å)		

Material		N ₂ adsorption data	
	BET (m^2/g)	Pore volume	Pore size (Å)
		(cm^{3}/g)	
UiO-67-MIMS	320.22	0.423	~6/~12
Macro-UiO-67-MIMS	364.3191	0.4449	~12
Macro-UiO-67-ILs	101.3936	0.3351	~12

Figure S3. FT-IR of UiO-67, UiO-67-MIMS, Macro-UiO-67-MIMS, Macro-UiO-67-ILs and MSA.

Figure S4. The catalytic process of (a) methyl dodecanoate and (b) methyl tetradecanoate without catalyst digested by $DMSO-d_6$.

Figure S5. The catalytic process of methyl dodecanoate of Macro-UiO-67-ILs digested by DMSO- d_6 and CDCl₃.

Figure S6. The catalytic process of methyl dodecanoate of MSA digested by $DMSO-d_6$ and $CDCl_3$.

Figure S7. The catalytic process of methyl dodecanoate of UiO-67-ILs digested by $DMSO-d_6$ and $CDCl_3$.

Figure S8. The catalytic process of methyl tetradecanoate of macro-UiO-67-ILs digested by $DMSO-d_6$ and $CDCl_3$.

Figure S9. The catalytic process of methyl tetradecanoate of MSA digested by $DMSO-d_6$ and $CDCl_3$.

Figure S10. The catalytic process of methyl tetradecanoate of UiO-67-ILs digested by DMSO-d₆ and CDCl₃.

In the course of the reaction, take 200 μ l of the mixed liquid every 5 minutes last 30 minutes, dry it in a vacuum oven, and dissolve it in the deuterated reagent. The ratio of the methyl peak at b to the area of the methyl peak at a is used to determine the degree of reaction.