Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Experimental and theoretical study of Tetraphenylethylene-based dicationic compounds for corrosion inhibition of steel and brass in acidic medium

Yiming An[†], Yumeng Chen[†], Xue Lei, Song Gao, Mudi Xin, Fulin Qiao, Yue Zhao, Lushen Zuo, Fei

Sun*, Chunlu Wang*

Sinopec Research Institute of Petroleum Processing Co., Ltd. Beijing 100083, P. R. China

*Corresponding authors

E-mail addresses: sunfei.ripp@sinopec.com (Fei Sun)

wcl.ripp@sinopec.com (Chunlu Wang)

Contents

1. Synthesis and characterization
2. UV-Vis absorption spectra S11
3. AIE characteristic study S13
4. Electrochemical measurements S17
5. SEM images S26
6. XPS data S35
7. Corrosion inhibitors in literature
8. Grand Canonical Monte Carlo (GCMC) Calculations

1. Synthesis and characterization

TPE-2NO₂ and TPE-2NH₂ were prepared according to literatures [S1-S5].

Synthesis of TPE-2NH₃·SO₄: In a 50 mL round-bottom flask, TPE-2NH₂ (724 mg, 2.0 mmol) was dissolved in mixed solvent of acetone (15 mL) and ethanol (15 mL). Then, concentrated sulfuric acid (220 mg, 2.2 mmol) was added slowly, with emergence of insoluble sediment immediately. The mixture was stirred for 30 min and filtered. The residue was washed with ethanol for more than three times. Then, it was collected and dried in vacuum, to afford TPE-2NH₃·SO₄ as yellow solid (883 mg) in 96% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.17 – 7.08 (6 H, m), 7.05 – 6.83 (12 H, m); ¹³C NMR (100 MHz, DMSO-d₆): δ 146.96, 144.95, 141.78, 135.32, 131.81, 131.07, 130.84, 127.59, 125.43; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18566.

Synthesis of TPE-2NH₃·2SCN: A suspension of TPE-2NH₃·SO₄ (690 mg, 1.5 mmol) in ethanol (20 mL) was stirred in a 50 mL round-bottom flask. Then, an ethanol (5 mL) solution dissolved with NaSCN (243 mg, 3.0 mmol) was added, heated to 50 °C and stirred for 1 h. After being cooled to room temperature, the mixture was centrifuged and filtered. The organic phase was evaporated and dried in vacuum, to afford TPE-2NH₃·2SCN as yellow solid (670 mg) in 93% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.20 – 7.11 (6 H, m), 7.10 – 7.03 (8 H, m), 7.01 – 6.95 (4 H, d); ¹³C NMR (100 MHz, DMSO-d₆): δ 142.76, 141.76, 138.45, 131.99, 131.55, 130.58, 129.78, 128.07, 126.88, 122.00; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18574. calcd. for C₂₆H₂₂N₂Na [M – 2H⁺ + Na⁺] (m/z): 385.16752; found: 385.16772.

Synthesis of TPE-2NH₃·2CI: In a 50 mL round-bottom flask, TPE-2NH₂ (363 mg, 1.0 mmol) was dissolved in mixed solvent of acetone (15 mL) and ethanol (15 mL). Then, concentrated hydrochloric acid (223 mg, 2.2 mmol) was added slowly, with emergence of insoluble sediment immediately. The mixture was stirred for 30 min and filtered. The residue was washed with acetone for more than three times. Then, it was collected and dried in vacuum, to afford TPE-2NH₃·2Cl as yellow solid (413 mg) in 95% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.18 – 7.11 (6 H, m), 7.09 – 7.01 (8 H, m), 7.00 – 6.95 (4 H, d); ¹³C NMR (100 MHz, DMSO-d₆): δ 142.75, 141.09, 138.59, 131.73, 130.38, 127.80, 126.54, 120.96; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18576.

Synthesis of TPE-2NH₃·2Br: In a 50 mL round-bottom flask, TPE-2NH₂ (363 mg, 1.0 mmol) was dissolved in mixed solvent of acetone (15 mL) and ethanol (15 mL). Then, 40% hydrobromic acid (445 mg, 2.2 mmol) was added slowly, with emergence of insoluble sediment immediately. The mixture was stirred for 30 min and filtered. The residue was washed with ethanol for more than three times. Then, it was collected and dried in vacuum, to afford TPE-2NH₃·2Br as yellow solid (498 mg) in 95% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.20 – 7.11 (6 H, m), 7.10 – 7.03 (8 H, m), 7.01 – 6.95 (4 H, d); ¹³C NMR (100 MHz, DMSO-d₆): δ 142.71, 141.62, 138.43, 131.89, 130.50, 127.97, 126.77, 121.78; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18558.

Synthesis of TPE-2NH₃·2NO₃: In a 50 mL round-bottom flask, TPE-2NH₂ (363 mg, 1.0 mmol) was dissolved in mixed solvent of acetone (15 mL) and ethanol (15 mL). Then, concentrated nitric acid (214 mg, 2.2 mmol) was added slowly, with emergence of insoluble sediment immediately. The mixture was stirred for 30 min and filtered. The residue was washed with ethanol for more than three times. Then, it was collected and dried in vacuum, to afford TPE-2NH₃·2NO₃ as brown solid (460 mg) in 94% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.20 – 7.10 (6 H, m), 7.05 – 6.98 (8 H, m), 6.98 – 6.94 (4 H, d); ¹³C NMR (100 MHz, DMSO-d₆): δ 142.84, 141.31, 138.60, 131.90, 130.52, 127.96, 126.71, 121.28; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18536.

Synthesis of TPE-2NH₃·2NH₂SO₃: In a 50 mL round-bottom flask, TPE-2NH₂ (363 mg, 1.0 mmol) was dissolved in mixed solvent of acetone (15 mL) and ethanol (15 mL). Then, sulfamic acid (214 mg, 2.2 mmol) was added slowly, with emergence of insoluble sediment immediately. The mixture was stirred for 30 min and filtered. The residue was washed with ethanol for more than three times. Then, it was collected and dried in vacuum, to afford TPE-2NH₃·2NH₂SO₃ as yellow solid (512 mg) in 92% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.20 – 7.14 (4 H, m), 7.14 – 7.08 (3 H, m), 7.03 – 6.93 (11 H, m); ¹³C NMR (100 MHz, DMSO-d₆): δ 146.31, 144.87, 141.65, 135.61, 131.83, 131.57, 130.85, 127.64, 125.52; HRMS (ESI, positive): calcd. for C₂₆H₂₃N₂ [M – H⁺] (m/z): 363.18558; found: 363.18548.

Fig. S2 ¹³C NMR spectrum of TPE-2NH₃·SO₄.

Fig. S4 ¹³C NMR spectrum of TPE-2NH₃·2SCN.

Fig. S6 13 C NMR spectrum of TPE-2NH₃·2Cl.

Fig. S8 ¹³C NMR spectrum of TPE-2NH₃·2Br.

Fig. S10 ¹³C NMR spectrum of TPE-2NH₃·2NO₃.

Fig. S12 ¹³C NMR spectrum of TPE-2NH₃·2NH₂SO₃.

2. UV-Vis absorption spectra

Fig. S13 (a) UV-Vis absorption spectra of the solutions of TPE-2NH₃·SO₄ with various concentrations in ethanol. (b) Variation of absorption intensity at 330 nm against concentration.

Fig. S14 (a) UV-Vis absorption spectra of the solutions of TPE-2NH₃·2Cl with various concentrations in ethanol. **(b)** Variation of absorption intensity at 330 nm against concentration.

Fig. S15 (a) UV-Vis absorption spectra of the solutions of TPE-2NH₃·2Br with various concentrations in ethanol. (b) Variation of absorption intensity at 330 nm against concentration.

Fig. S16 (a) UV-Vis absorption spectra of the solutions of $TPE-2NH_3 \cdot 2NO_3$ with various concentrations in ethanol. (b) Variation of absorption intensity at 330 nm against concentration.

Fig. S17 (a) UV-Vis absorption spectra of the solutions of TPE- $2NH_3 \cdot 2NH_2SO_3$ with various concentrations in ethanol. (b) Variation of absorption intensity at 334 nm against concentration.

Fig. S18 UV-Vis absorption spectra of the solutions of 40 mg/L TPE-based dicationic compounds in ethanol.

3. AIE characteristic study

Fig. S19 Photograph of TPE-2NH₃·SO₄ in ethanol/water mixtures with increasing water volume fractions (f_{water}) under 365 nm UV light excitation. Concentration: 40 mg/L.

Fig. S20 (a) Emission spectra of TPE-2NH₃·SO₄ in ethanol/water mixtures with 365 nm UV light excitation. Concentration: 40 mg/L. (b) Variation of fluorescence intensity at 457 nm against f_{water} .

Fig. S21 Photograph of TPE-2NH₃·2Cl in ethanol/water mixtures with increasing water volume fractions (f_{water}) under 365 nm UV light excitation. Concentration: 40 mg/L.

Fig. S22 (a) Emission spectra of TPE-2NH₃·2Cl in ethanol/water mixtures with 365 nm UV light excitation. Concentration: 40 mg/L. (b) Variation of fluorescence intensity at 492 nm against f_{water} .

Fig. S23 Photograph of TPE-2NH₃·2Br in ethanol/water mixtures with increasing water volume fractions (f_{water}) under 365 nm UV light excitation. Concentration: 40 mg/L.

Fig. S24 (a) Emission spectra of TPE-2NH₃·2Br in ethanol/water mixtures with 365 nm UV light excitation. Concentration: 40 mg/L. (b) Variation of fluorescence intensity at 484 nm against f_{water} .

Fig. S25 Photograph of TPE-2NH₃·2NO₃ in ethanol/water mixtures with increasing water volume fractions (f_{water}) under 365 nm UV light excitation. Concentration: 40 mg/L.

Fig. S26 (a) Emission spectra of TPE-2NH₃·2NO₃ in ethanol/water mixtures with 365 nm UV light excitation. Concentration: 40 mg/L. (b) Variation of fluorescence intensity at 486 nm against f_{water} .

Fig. S27 Photograph of TPE-2NH₃·2NH₂SO₃ in ethanol/water mixtures with increasing water volume fractions (f_{water}) under 365 nm UV light excitation. Concentration: 40 mg/L.

Fig. S28 (a) Emission spectra of TPE-2NH₃·2NH₂SO₃ in ethanol/water mixtures with 365 nm UV light excitation. Concentration: 40 mg/L. (b) Variation of fluorescence intensity at 457 nm against f_{water} .

Fig. S29 Emission spectra of 40 mg/L TPE-based dicationic compounds in ethanol/water mixtures with maximum fluorescence intensity under 365 nm UV light excitation.

4. Electrochemical measurements

Figure S30 Equivalent electrical circuit models used to fit EIS data: in $0.5 \text{ M H}_2\text{SO}_4$ (left) and in $0.5 \text{ M H}_2\text{SO}_4$ in presence of TPE-based compounds (right).

Fig. S31 EIS curves for 20# steel in the absence or presence of various concentrations of (a) TPE-2NH₃·2SCN; (b) TPE-2NH₃·SO₄; (c) TPE-2NH₃·2Cl; (d) TPE-2NH₃·2Br; (e) TPE-2NH₃·2NO₃; (f) TPE-2NH₃·2NH₂SO₃.

Inhibitor	<i>c</i> / (mg/L)	$R_{\rm s}$ / (Ω /cm ²)	$R_{\rm ct}$ / (Ω /cm ²)	$\eta_{ m E}$ / %
Blank	_	2.7 11.8		
	40	1.6	156.5	92.5
TPE-2NH ₃ ·2SCN	70	1.5	192.2	93.9
	100	1.9	287.9	95.9
	40	3.3	18.6	36.5
TPE-2NH ₃ ·SO ₄	70	1.9	29.4	59.9
	100	3.8	27.9	57.7
	40	1.9	20.8	43.4
TPE-2NH₃·2Cl	70	2.2	35.0	66.3
	100	2.1	35.1	66.4
TPE-2NH₃·2Br	40	4.7	19.9	40.8
	70	3.2	32.5	63.7
	100	2.5	34.0	65.3
	40	3.3	20.5	42.3
TPE-2NH ₃ ·2NO ₃	70	2.9	31.1	62.1
	100	3.2	22.7	48.1
TPE-2NH ₃ ·2NH ₂ SO ₃	40	3.9	15.4	23.5
	70	3.0	18.5	36.4
	100	2.7	22.8	48.3

Table S1 Electrochemical parameters of 20# steel in the absence or presence of differentconcentrations of TPE-based dicationic compounds by EIS measurements in 0.5 M H₂SO₄.

Fig. S32 EIS curves for H62 brass in the absence or presence of various concentrations of (a) TPE-2NH₃·2SCN; (b) TPE-2NH₃·SO₄; (c) TPE-2NH₃·2Cl; (d) TPE-2NH₃·2Br; (e) TPE-2NH₃·2NO₃; (f) TPE-2NH₃·2NH₂SO₃.

Inhibitor	<i>c</i> / (mg/L)	$R_{\rm s}$ / (Ω /cm ²)	$R_{\rm ct}$ / (Ω /cm ²)	$\eta_{ m E}$ / %
Blank	_	2.0 331.2		
	40	2.1	5492.0	94.0
TPE-2NH ₃ ·2SCN	70	2.5	6515.0	94.9
	100	2.9	6773.0	95.1
	40	1.1	341.1	2.9
TPE-2NH ₃ ·SO ₄	70	1.6	400.8	17.4
	100	1.3	508.0	34.8
	40	2.2	312.9	-5.8
TPE-2NH ₃ ·2Cl	70	1.4	497.8	33.5
	100	1.3	495.2	33.1
TPE-2NH₃·2Br	40	2.3	1104.0	70.0
	70	1.8	1610.0	79.4
	100	2.1	1650.8	79.9
	40	1.8	597.9	44.6
TPE-2NH ₃ ·2NO ₃	70	1.5	554.2	40.2
	100	1.5	534.0	38.0
TPE-2NH ₃ ·2NH ₂ SO ₃	40	2.3	502.1	34.0
	70	2.3	659.8	49.8
	100	2.3	559.7	40.8

Table S2 Electrochemical parameters of H62 brass in the absence or presence of differentconcentrations of TPE-based dicationic compounds by EIS measurements in $0.5 \text{ M H}_2\text{SO}_4$.

Fig. S33 PDP curves for 20# steel in the absence or presence of various concentrations of (a) TPE-2NH₃·2SCN; (b) TPE-2NH₃·SO₄; (c) TPE-2NH₃·2Cl; (d) TPE-2NH₃·2Br; (e) TPE-2NH₃·2NO₃; (f) TPE-2NH₃·2NH₂SO₃.

Inhibitor c/(mg/L) $I_{\rm corr}/(\mu A/cm^2)$ $E_{\rm corr}/V$ $\beta_{\rm c}/({\rm mV/dec})$ $\beta_a/(mV/dec)$ $\eta_{\rm P}/\%$ Blank 1701.0 -0.503 146.3 113.2 ____ ____ 40 97.3 -0.465 139.3 77.2 94.3 TPE-2NH₃·2SCN 70 97.3 -0.467 140.5 80.4 94.3 100 -0.427 203.2 51.5 96.8 55.1 40 1046.0 -0.479 109.2 136.6 38.5 71.9 TPE-2NH₃·SO₄ 70 621.9 -0.489 126.1 63.4 100 718.0 -0.481 136.0 100.8 57.8 40 1331.0 -0.446 135.2 154.9 21.8 TPE-2NH₃·2Cl 70 1155.0 -0.435 142.0 170.4 32.1 149.3 100 786.1 -0.433 163.3 53.8 40 1096.0 -0.487 144.2 123.0 35.6 TPE-2NH₃·2Br 70 631.5 -0.479 131.1 96.5 62.9 100 489.3 -0.495 88.6 71.2 124.3 -0.489 40 1143.1 155.4 127.6 32.8 TPE-2NH₃·2NO₃ 70 844.7 -0.45 132.9 145.6 50.3 100 65.4 589.0 -0.478 166.8 139.6 40 1794.0 -0.444 142.3 167.1 -5.5 TPE-2NH₃·2NH₂SO₃ 70 1757.0 -0.441 141.2 182.2 -3.3 100 827.6 -0.439 142.3 155.0 51.3

Table S3 Electrochemical parameters of 20# steel in the absence or presence of different concentrations of TPE-based dicationic compounds by potentiodynamic polarization measurements in 0.5 M H₂SO₄.

Fig. S34 PDP curves for H62 brass in the absence or presence of various concentrations of (a) TPE-2NH₃·2SCN; (b) TPE-2NH₃·SO₄; (c) TPE-2NH₃·2Cl; (d) TPE-2NH₃·2Br; (e) TPE-2NH₃·2NO₃; (f) TPE-2NH₃·2NH₂SO₃.

Inhibitor c/(mg/L) $I_{\rm corr}/(\mu A/cm^2)$ $E_{\rm corr}/{\rm V}$ $\beta_{\rm c}/({\rm mV/dec})$ $\beta_a/(mV/dec)$ $\eta_{\rm P}/\%$ Blank 84.7 -0.073 227.0 55.0 ____ ____ 40 22.8 -0.222 366.3 180.6 73.1 TPE-2NH₃·2SCN 70 10.9 -0.249 246.1 164.8 87.1 100 7.1 -0.302 147.1 180.0 91.7 40 90.3 -0.074 224.6 68.4 -6.6 -0.077 59.3 TPE-2NH₃·SO₄ 70 67.7 211.1 20.1 100 44.7 -0.079 264.9 47.2 54.3 40 62.2 -0.106 206.7 92.3 26.5 TPE-2NH₃·2Cl 70 36.5 -0.138 193.8 105.0 57.0 100 109.0 31.0 -0.141 205.1 63.5 40 35.5 -0.234 186.9 232.8 58.1 TPE-2NH₃·2Br 70 27.3 -0.187 159.8 95.7 67.8 100 36.4 -0.245 177.5 213.1 57.0 40 -0.16 214.3 102.0 42.0 50.4 99.3 TPE-2NH₃·2NO₃ 70 39.0 -0.155 266.1 54.0 100 -0.133 31.3 184.6 94.6 63.0 40 77.9 -0.106 210.7 143.4 8.1 TPE-2NH₃·2NH₂SO₃ 70 41.6 -0.144 210.3 114.7 50.9 100 32.6 -0.137 165.7 104.1 61.5

Table S4 Electrochemical parameters of H62 brass in the absence or presence of different concentrations of TPE-based dicationic compounds by potentiodynamic polarization measurements in $0.5 \text{ M H}_2\text{SO}_4$.

5. SEM images

Fig. S35 SEM images of 20# steel coupons in the presence of different concentrations of TPE-2NH₃·2SCN after weight loss experiment: (a, b) 5 mg/L; (c, d) 10 mg/L; (e, f) 20 mg/L; (g, h) 40 mg/L; (i, j) 70 mg/L; (k, l) 200 mg/L. Scale: 100 μm for (a, c, e, g, i, k) and 10 μm for (b, d, f, h, j, l).

Fig. S36 SEM images of 20# steel coupons in the presence of different concentrations of TPE- $2NH_3 \cdot SO_4$ after weight loss experiment: (a, b) 40 mg/L; (c, d) 70 mg/L. Scale: 100 µm for (a, c) and 10 µm for (b, d).

Fig. S37 SEM images of 20# steel coupons in the presence of different concentrations of TPE- $2NH_3 \cdot 2Cl$ after weight loss experiment: (a, b) 40 mg/L; (c, d) 70 mg/L. Scale: 100 μ m for (a, c) and 10 μ m for (b, d).

Fig. S38 SEM images of 20# steel coupons in the presence of different concentrations of TPE- $2NH_3 \cdot 2Br$ after weight loss experiment: (a, b) 40 mg/L; (c, d) 70 mg/L. Scale: 100 µm for (a, c) and 10 µm for (b, d).

Fig. S39 SEM images of 20# steel coupons in the presence of different concentrations of TPE- $2NH_3 \cdot 2NO_3$ after weight loss experiment: (a, b) 40 mg/L; (c, d) 70 mg/L. Scale: 100 µm for (a, c) and 10 µm for (b, d).

Fig. S40 SEM images of 20# steel coupons in the presence of different concentration of TPE- $2NH_3 \cdot 2NH_2SO_3$ after weight loss experiment: (a, b) 40 mg/L; (c, d) 70 mg/L. Scale: 100 µm for (a, c) and 10 µm for (b, d).

Fig. S41 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·2SCN after weight loss experiment. Scale: (a) 100 μ m; (b) 10 μ m.

Fig. S42 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·SO₄ after weight loss experiment. Scale: (a) 100 μ m; (b) 10 μ m.

Fig. S43 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·2Cl after weight loss experiment. Scale: (a) 100 μ m; (b) 10 μ m.

Fig. S44 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·2Br after weight loss experiment. Scale: (a) 100 μ m; (b) 10 μ m.

Fig. S45 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·2NO₃ after weight loss experiment. Scale: (a) 100 μ m; (b) 10 μ m.

Fig. S46 SEM images of H62 coupon in the presence of 70 mg/L TPE-2NH₃·2NH₂SO₃ after weight loss experiment. Scale: (a) 100 μm; (b) 10 μm.

6. XPS data

Fig. S47 The XPS full spectra of 20# steel coupons: (a) new coupon before corrosion; (b) blank sample after weight loss experiment; in the presence of 100 mg/L (c) TPE-2NH₃·2SCN, (d) TPE-2NH₃·SO₄, (e) TPE-2NH₃·2Cl, (f) TPE-2NH₃·2Br, (g) TPE-2NH₃·2NO₃, (h) TPE-2NH₃·2NH₂SO₃ after weight loss experiment.

Fig. S48 The XPS full spectra of H62 brass coupons: (a) new coupon before corrosion; (b) blanksample after weight loss experiment; in the presence of 100 mg/L (c) TPE-2NH $_3$ ·2SCN, (d) TPE-2NH $_3$ ·SO₄, (e) TPE-2NH $_3$ ·2Cl, (f) TPE-2NH $_3$ ·2Br, (g) TPE-2NH $_3$ ·2NO₃, (h) TPE-2NH $_3$ ·2NH $_2$ SO₃afterweightlossexperiment.

7. Corrosion inhibitors in literature

Table S5 List of corrosion inhibitors for carbon steel in literature.

Inhibitor	Concentration	Carbon steel	Acid solution	Method	Temperature	Inhibition efficiency	Mechanism of action	ΔG_{ads} (kJ/mol)	Adsorption isotherm	Refer ence
Dodecyl trimethyl ammonium bromide (DTAB)-Thiourea	10-3M	Q235	0.05 M H ₂ SO4	Weight- loss	30°C	93.37%				[S6]
Dodecyl dimethyl benzyl ammonium bromide (DDBAB)-Thiourea	10-3M	Q235	0.05 M H ₂ SO ₄	Weight- loss	30°C	94.98%				[S6]
Trans-cinnamaldehyde	1000 ppm	IS2062 mild steel	1 M HCl	Weight- loss	27°C	91%	Mixed-type	-23.53	Temkin	[S7]
OMID	0.1 mM	Carbon steel	1 M HCl	Weight- loss	Room temperature	~97%	Mixed-type			[S8]
1-butyl-2,3-dimethylimidazolium iodide [DBIM]+I-	100 ppm	API 5L X52	1 M H ₂ SO ₄	PDP		95%	Mixed-type	-35.5	Langmuir	[S9]
1-propyl-2,3-dimethylimidazolium iodide [DPIM] ⁺ I ⁻	100 ppm	API 5L X52	$1 \text{ M H}_2\text{SO}_4$	PDP		96%	Mixed-type	-37.6	Langmuir	[S9]
amino acid zwitterion(Z-1)	300.8 µM	Mild steel	1 M HCl	Weight- loss	303 K	95.40%	Mixed-type	-37.64	Langmuir	[S10]
amino acid zwitterion(Z-2)	15.04 μM	Mild steel	1 M HCl	Weight- loss	303 K	96.22%	Mixed-type	-41.40	Langmuir	[S10]
castor oil-based corrosion inhibitor (COCI)	140 µM	Mild steel	1 M HCl	PDP	60°C	86%	Mixed-type	-41.2	Langmuir	[S11]
Fluconazole	200 ppm	API 5L X52	1 M HCl	EIS	20°C	90.6%	Mixed-type	-23.7	Langmuir	[S12]
1,2,4-trizole	200 ppm	API 5L X52	1 M HCl	EIS	20°C	91.4%	Mixed-type	-18.0	Langmuir	[S12]
1-bromo-2.4-di-fluorobenzene	200 ppm	API 5L X52	1 M HCl	EIS	20°C	82.4%	Mixed-type	-20.8	Langmuir	[S12]
A fungil	200 ppm	API 5I X52	1 M HCl	FIS	20°C	79.1%	inned type	20.0	Langmuir	[\$12]
1-benzyl-4-phenyl-1H-1,2,3-triazole	2.13 mM	A36 mild	1 M HCl	Weight-	328 K	94.2%	Mixed-type	-35.7	Langmuir	[\$12]
		steel		loss	A10.77	0.0.00				
Ginkgoleaf extract	200 mg/L	X70 steel	1 M HCl	EIS	318 K	92.5%	Mixed-type	-28.83	Langmuir	[S14]
(4-benzothiazole-2-yl-phenyl)-dimethyl- amine	50 ppm	Mild steel	1 M HCl	Weight- loss	25°C	96.8%	Mixed-type	-40.80	Langmuir	[S15]
(1-benzyl-1H-1,2,3-triazole-4-yl)methanol (BTM)	1 mM	Mild steel	1 M HCl	Weight- loss	25°C	97.8%			Langmuir	[S16]
(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazole-4- yl)methanol (PTM)	1 mM	Mild steel	1 M HCl	Weight- loss	25°C	99.0%			Langmuir	[S16]
Methionine	10 mM	Carbon steel	$0.5 \text{ MH}_2\text{SO}_4$	EIS	25°C	85.92%				[S17]
2-(4-nitrophenyl) benzimidazole (4NPBI)	1 mM	Mild steel	1 M HCl	PDP	303 K	93.7%	Mixed-type	-39.12	Langmuir	[S18]
2-(4-aminophenyl) benzimidazole (4APBI)	1 mM	Mild steel	1 M HCl	PDP	303 K	89.7%	Mixed-type	-37.94	Langmuir	[\$18]
2-(2-nitronhenyl) benzimidazole (2NPRI)	1 mM	Mild steel	1 M HCl	PDP	303 K	87.8%	Mixed-type	37.32	Langmuir	[\$12]
2 (2 aminophenyl) benzimidazole (214 BI)	1 mM	Mild steel	1 M HCl	DDD	202 K	85.004	Mixed-type	26.69	Langmuir	[510]
2-(2-aninophenyi) benzimidazore (2AFBI)		Wild steel		PDP	303 K	01.20/	Mixed-type	-30.08	Langmun	[510]
2-phenyl benzimidazole (PBI)	1 mM	Mild steel	IMHCI	PDP	303 K	81.3%	Mixed-type	-35.95	Langmuir	[818]
2-(n-hexylamino)-4-(3'-N,N-dimethylamino- propyl)amino-6-(benzothiazol-2-yl)thio- 1,3,5-s-triazine (BTC6T)	1 mM	Carbon steel	1 M HCl	Weight- loss	40°C	92.3%	Mixed-type	-36.52	Langmuir	[S19]
2-(n-octylamino)-4-(3'-N,N-dimethylamino- propyl)amino-6-(benzothiazol-2-yl)thio- 1,3,5-s-triazine (BTC8T)	1 mM	Carbon steel	1 M HCl	Weight- loss	40°C	92.9%	Mixed-type	-37.92	Langmuir	[S19]
2-((Thiazole-2-ylimino)methyl)phenol (THYMP)	10 mM	Mild steel	2 M HCl	Weight- loss	303 K	94%	Mixed-type	-34.3	Langmuir	[S20]
tetra-n-butylammonium L-methioninate [TBA][L-Met]	1.59 mM	Mild steel	1 M HCl	PDP	°C	95.1%	Mixed-type	-9.9	Frundlich	[S21]
2-amino-5-(3-pyridyl)-1,3,4-thiadiazole(3- APTD)	6 mM	Mild steel	$0.5 \text{ M H}_2\text{SO}_4$	EIS	30°C	92%		-33.36	Langmuir	[S22]
2-amino-5-(4-pyridyl)-1,3,4-thiadiazole (4- APTD)	6 mM	Mild steel	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	EIS	30°C	95%		-33.34	Langmuir	[S22]
5-((E)-4-phenylbuta-1,3-dienylideneamino)- 1,3,4-thiadiazole-2-thiol (PDTT)	1 mM	Mild steel	0.5 M HCl	EIS	298 K	97.9%	Mixed-type	-40.16	Langmuir	[S23]
3,4-dihydroxy-L-phenylalanine (L-DOPA)	200 mg/L	Mild steel	1 M HCl	PDP	Room temperature	97.95%	Mixed-type	-30.41	Langmuir	[S24]
xcess sewage sludge (ESS)	0.372 g/L		10% HCl	Weight- loss	°C	93.5%	Mixed-type	-24.52	Langmuir	[S25]
Hexadecylpyridinium bromide (HDPB)	1 mM	Mild steel	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	EIS	60°C	91%	Mixed-type	-39.50	Bockris-S winkels	[S26]
Polyaspartic acid (PASP)	2 g/L	Mild steel	0.5 M H ₂ SO ₄	Weight- loss	303 K	87.9%				[S27]
2-[4-(2-chlorobenzyl)-3-methyl-6- thiooxopyridazin-1(6H)-yl]acetohydrazide	25 mM	Steel	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	Weight- loss	298 K	99%		-18.76	Temkin	[S28]
N,N-Diethylammonium O,O'-di(4- bromophenyl)dithiophosphate (Br-NOP)	100 mg/L	Q235 steel	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	EIS	300 K	98.07%		-39.61	Langmuir	[S29]
Omeprazole (OMP)	300 mg/L	X60 Steel	0.5 M H ₂ SO ₄	EIS	298 K	92.52%		-26.06	Langmuir	[S30]

Inhibitor	Concentration	Test solution	Method	Temperature	Inhibition efficiency	Mechanism of action	ΔG_{ads} (kJ/mol)	Adsorption isotherm	Refer ence
Sodium gluconate (SG) and cetyltrimethyl ammonium bromide (CTAB)	10 ⁻³ M of SG, 5ppm CTAB	0.5 M H ₂ SO ₄	PDP	303K	89%	Cathodic- type	-44.1	Langmuir	[S31]
Polyanethol sulfonate	0.1%	simulated urban rain $(pH = 5)$	PDP	25°C	90%	Mixed-type			[S32]
4-aminothiophenol (4-ATP)	200ppm	0.5 M HNO ₃	PDP	25°C	81%	Cathodic- type	-32.77	Langmuir	[S33]
4-amino phenol disulfide (4- APD)	200ppm	0.5 M HNO ₃	PDP	25°C	93%	Cathodic- type	-31.05	Langmuir	[S33]
natural extract of Camellia sinensis	1 g/L	0.1 M $Na_2SO_4(pH = 4)$	EIS	Room temperature	95%	Mixed-type			[S34]
Mimosa extract	2000ppm	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	PDP EIS	Room temperature	63.5% 60.24%	Anodic- type	-6.0138	Temkin	[S35]
1-diethylamino-propan-2-ol (EAP)	0.01 mol/L	simulatedatmos pheric water	EIS		90.7%	Anodic- type			[S36]
1,3-bis-diethylamino-propan- 2-ol (DEAP)	0.01 mol/L	simulatedatmos pheric water	EIS		92.9%	Anodic- type			[S36]
1,3-bis-diethylamino-propan- 2-ol (DEAP)	10 mM	simulatedatmos pheric water	Weight- loss	50°C	94.3%	Anodic- type		Langmuir	[S37]
N-[1-(benzotriazol-1- yl)ethyl]aniline (BTEA)	150 ppm	3% NaCl solution	Weight- losst	Room temperature	~88%	Mixed-type			[S38]
N,N-dibenzotriazol-1- ylmethylaminoethane (DBME)	150 ppm	3% NaCl solution	Weight- loss	Room temperature	~92%	Mixed-type			[S38]
Benzotriazole(BTA)	150 ppm	3% NaCl solution	Weight- loss	Room temperature	74.80%	Mixed-type			[S39]
N-[1-(benzotriazol-1- yl)methyl]aniline (BTMA)	150 ppm	3% NaCl solution	Weight- loss	Room temperature	85.08%	Mixed-type			[S39]
1-hydroxy methyl benzotriazole (HBTA)	150 ppm	3% NaCl solution	Weight- loss	Room temperature	91.13%	Mixed-type			[S39]
Gluconic acid sodium (GASS)	0.01 M	3% NaCl solution	EIS		~95%				[S40]
Polyphosphoric acid sodium salt (PP)	1 g/L	3% NaCl solution	EIS		~50%				[S40]

Table S6 List of corrosion inhibitors for brass in literature.

8. Grand Canonical Monte Carlo (GCMC) Calculations

Fig. S49 Side view (left) and top view (right) of equilibrium adsorption configuration for TPE-2NH₃·2SCN on steel obtained by GCMC simulation in solution.

Fig. S50 Side view (left) and top view (right) of equilibrium adsorption configuration for TPE-

 $2NH_3$ ·2SCN on brass obtained by GCMC simulation in solution.

Reference:

- [S1] J. Xiong, W. Xie, J. Sun, J. Wang, Z. Zhu, H. Feng, D. Guo, H. Zhang and Y. Zheng, J. Org. Chem., 2016, 81, 3720-3726.
- [S2] A. Schreivogel, J. Maurer, R. Winter, A. Baro and S. Laschat, Eur. J. Org. Chem., 2006, 3395-3404.
- [S3] J. Lu and J. Zhang, J. Mater. Chem. A, 2014, 2, 13831-13834.
- [S4] T. Yu, D. Ou, Z. Yang, Q. Huang, Z. Mao, J. Chen, Y. Zhang, S. Liu, J. Xu, M.R. Bryce and Z. Chi, *Chem. Sci.*, 2017, 8, 1163-1168.
- [S5] W. Zhao, Z. He, Q. Peng, J. W. Y. Lam, H. Ma, Z. Qiu, Y. Chen, Z. Zhao, Z. Shuai, Y. Dong and B. Z. Tang, *Nat. Commun.*, 2018, 9, 3044-3051.
- [S6] T. Zheng, J. Liu, M. Wang, L. Qian, J. Wang, Y. Chong and G. Lia, Corros. Sci., 2022, 199, 110199.
- [S7] K. Dharmendr, K. Venkata Muralidhar, J. Vinay and R. Beena, Corros. Sci., 2022, 208, 110623.
- [S8] K. Kousar, M. S. Walczak, T. Ljungdahl, A. Wetzel, H. Oskarsson, P. Restuccia, E. A. Ahmad, N. M. Harrison and R. Lindsay, *Corros. Sci.*, 2021, 180, 109195.
- [S9] A. L. Paulina, D. J. Víctor, H. Hernández-Cocoletzi, N. Noel, O. X. Octavio and V. L. Natalya, *Corros. Sci.*, 2020, 175, 108888.
- [S10] J. Haque, V. Srivastava, M. A. Quraishi, D. Singh Chauhan, H. Lgaz and I. Chung, *Corros. Sci.*, 2020, 172, 108665.
- [S11] A. Farhadian, A. Rahimi, N. Safaei, A. Shaabani, M. Abdouss and A. Alavi, *Corros. Sci.*, 2020, 175, 108871.
- [S12] A. Espinoza-Vázquez, F. J. Rodríguez-Gómez, G. E. Negrón-Silva, R. González-Olvera, D.
- Ángeles-Beltrán, M. Palomar-Pardavé, A. Miralrio and M. Castro, Corros. Sci., 2020, 174, 108853.
- [S13] F. Caio Machado, X. A. Leonardo, S. Nazir Escarpini dos, C. M. B. Adriana and P. Eduardo Ariel, *Corros. Sci.*, 2019, 149, 185-194.
- [S14] Y. Qiang, S. Zhang, B. Tan and S. Chen, Corros. Sci., 2018, 133, 6-16.
- [S15] S. Zohreh, A. Mehdi, T. Milad, R. Keyvan and M. Soraia, Corros. Sci., 2017, 114, 133-145.

- [S16] M. Qi, Q. Sijun, H. Xiaohong, T. Yongming and L. Gang, Corros. Sci., 2017, 129, 91-101.
- [S17] L. F. M. Glaydson, N. C. Stefane, N. F. Valder, N. S. C. Paulo, N. C. Adriana and L.-N. Pedro de, *Corros. Sci.*, 2017, **115**, 41-55.
- [S18] A. Dutta, S. K. Saha, U. Adhikari, P. Banerjee and D. Sukul, Corros. Sci., 2017, 123, 256-266.
- [S19] Z. Hu, Y. Meng, X. Ma, H. Zhu, J. Li, C. Li and D. Cao, Corros. Sci., 2016, 112, 563-575.
- [S20] Y. Nurdane, F. Alper, E. ÿmit and C.E. Kaan, Corros. Sci., 2016, 111, 110-120.
- [S21] E. Kowsari, S. Y. Arman, M. H. Shahini, H. Zandi, A. Ehsani, R. Naderi, A. PourghasemiHanza and M. Mehdipour, *Corros. Sci.*, 2016, **112**, 73-85.

[S22] Y. Tang, X. Yang, W. Yang, R. Wan, Y. Chen and X. Yin, Corros. Sci., 2010, 52.5, 1801-1808.

- [S23] R. Solmaz, Corros. Sci., 2010, 52.10, 3321-3330.
- [S24] H. Zhao, T. Sun, L. Huang, J. Wei and S. Qiu, Chem. Eng. J., 2022, 437, 135242.
- [S25] W. Su, B. Tang, F. Fu, S. Huang, S. Zhao, L. Bin, J. Ding and C. Chen, J. Hazard. Mater., 2014, 279, 38-45.
- [S26] Mahmoud M. Saleh, Mater. Chem. Phys., 2006, 98, 0254-0584.
- [S27] B. Qian, J. Wang, M. Zheng and B. Hou, Corros. Sci., 2013, 75, 0010-938X.
- [S28] M. Bouklah, N. Benchat, A. Aouniti, B. Hammouti, M. Benkaddour, M. Lagrenée, H. Vezin and F. Bentiss, *Prog. Org. Coat.*, 2004, **51**, 0300-9440.
- [S29] C. Lai, X. Su, T. Jiang, L. Zhou, B. Xie, Y. Li and L. Zou. Int. J. Electrochem. Sci., 2016, 11, 9413-9423.
- [S30] Y. Liu, W. Du, X. Yao, C. Liu, X. Luo, L. Guo and C. Guo, *Int. J. Electrochem. Sci.*, 2022, 17, 220516.
- [S31] J. Jennane, M. Ebn Touhami, S. Zehra, Y. Baymou, S. Kim, I. Chung, and H. Lgaz, *Mater. Chem. Phys.*, 2019, **227**, 200.
- [S32] R. Fuchs-Godec, J. Mol. Liq., 2017, 228, 230.
- [S33] M. Ebrahimzadeh, M. Gholami, M. Momeni, A. Kosari, M. H. Moayed and A. Davoodi, *Appl. Surf. Sci.*, 2015, **332**, 384.
- [S34] R. Tambi, R. Stefano and Z. Caterina, Appl. Surf. Sci., 2014, 307, 209.

- [S35] H. Gerengi, K. Schaefer and H. I. Sahin, J. Ind. Eng. Chem., 2012, 18, 2204.
- [S36] G. Guo and L. Chenghao, *Electrochim. Acta*, 2007, **52**, 4554.
- [S37] G. Gao and C. Liang, Corros. Sci., 2007, 49, 3479.
- [S38] R. Ravichandran and N. Rajendran, Appl. Surf. Sci., 2005, 239, 182.
- [S39] R. Ravichandran, S. Nanjundan and N. Rajendran, Appl. Surf. Sci., 2004, 236, 241.
- [S40] A. Nagiub and F. Mansfeld, Corros. Sci., 2001, 43, 2147.