Electronic Supplementary Information (ESI)

Synthesis of Tosylated Starch in Eco-Friendly Media

Phitawat Namnoud,^a Manisa Kongkaew,^b Suttiporn Pikulthong,^a Rungtiwa Wongsagonsup,^c Taweechai Amornsakchai,^a Siwaporn Meejoo Smith,^{a*} and Thanthapatra Bunchuay^a

- ^a Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.
- ^b Department of Science and Technology, Faculty of Science, Pibulsongkram Rajabhat University, Phlai Chumphon, Mueang Phitsanulok District, Phitsanulok 65000, Thailand
- ^c Food Technology Division, School of Interdisciplinary Studies, Mahidol University, Kanchanaburi Campus, Kanchanaburi, 71150, Thailand

Email: siwaporn.smi@mahidol.ac.th, siwaporn.smi@mahidol.edu

1. Dissolution of starch in aqueous solutions

Fig. S1 Homogeneous dissolution of starch in water facilitated by the addition of NaOH-urea and a surfactant (Brij[®] 30)

2. ATR-FTIR spectra of starch synthesised from aqueous solution containing surfactants

Fig. S2 FTIR spectra of tosyl starch samples obtained under aqueous NaOH-urea with the addition of different surfactants.

Table S1 FTIR peak assignments of tosyl starch samples.

Ū(cm⁻¹)	Vibrational Mode
3600-3000	O–H stretching
2925	CH ₂ , CH ₃ stretching
1597	Aromatic C=C stretching
1353	Symmetric S=O stretching
1173	Asymmetric S=O stretching
810, 665	Aromatic C=C bending

3. ¹H-NMR spectra of starch samples

3.1 Native cassava starch sample

Fig. S3 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of native cassava starch

Fig. S4 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch (pyridine system)

Fig. S5 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch (DMA/LiCl system)

4. ¹H-NMR spectra of tosyl starch samples prepared in NaOH-urea systems

- 4.1 Brij[®] 30
 - 4.1.1 Brij[®] 30 (2.62 mmol) and TsCl (4 equiv. per AGU)

Fig. S6 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (2.62 mmol) in the presence of TsCl (4 equiv. per AGU)

Fig. S7 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (1.57 mmol) in the presence of TsCl (4 equiv. per AGU)

4.1.3 Brij[®] 30 (1.05 mmol) and TsCl (4 equiv. per AGU)

Fig. S8 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (1.05 mmol) in the presence of TsCl (4 equiv. per AGU)

4.1.4 Brij[®] 30 (0.52 mmol) and TsCl (4 equiv. per AGU)

Fig. S9 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (0.52 mmol) in the presence of TsCl (4 equiv. per AGU)

4.1.5 Brij[®] 30 (2.62 mmol) and TsCl (3 equiv. per AGU)

Fig. S10 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (2.62 mmol) in the presence of TsCl (3 equiv. per AGU)

4.1.6 Brij[®] 30 (2.62 mmol) and TsCl (2 equiv. per AGU)

Fig. S11 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (2.62 mmol) in the presence of TsCl (2 equiv. per AGU)

4.1.7 Brij[®] 30 (2.62 mmol) and TsCl (1 equiv. per AGU)

Fig. S12 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Brij[®] 30 (2.62 mmol) in the presence of TsCl (1 equiv. per AGU)

4.2 Tween®20

Fig. S13 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Tween[®]20 (2.62 mmol) in the presence of TsCl (equiv. per AGU)

Fig. S14 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in Tween[®]80 (2.62 mmol) in the presence of TsCl (equiv. per AGU)

Fig. S15 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of of tosyl starch prepared inTriton[™]X-100 (2.62 mmol) in the presence of TsCl (equiv. per AGU)

Fig. S16 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in SDS (2.62 mmol) in the presence of TsCl (equiv. per AGU)

Fig. S17 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of tosyl starch prepared in CTAB (2.62 mmol) in the presence of TsCl (equiv. per AGU)

5. ¹H-NMR spectra of substituted tosyl starch samples

5.1 Azide-substituted tosyl starch prepared in DMSO

Fig. S18 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of azide-substituted tosyl starch prepared in DMSO

Fig. S19 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of phthalimide-substituted tosyl starch prepared in DMSO

Fig. S20 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of azide-substituted tosyl starch prepared in NaOH-urea-Brij[®] 30

Fig. S21 ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of phthalimide-substituted tosyl starch prepared in NaOH-urea-Brij[®] 30

6 ATR-FTIR spectra of substituted tosyl starch samples

6.1 Azide-substituted tosyl starch prepared in DMSO

Fig. S22 FTIR spectra of azide-substituted tosyl starch prepared in DMSO

Table S2 FTIR peak assignments of azide-substituted tosyl starch prepared in DMSO

Ū(cm⁻¹)	Vibrational Mode
3600-3000	O–H stretching
2928	CH₂, CH₃ stretching
2103	Azide N=N=N stretching
1358	Symmetric S=O stretching
1176	Asymmetric S=O stretching
810, 665	Aromatic C=C bending

6.2 Phthalimide-substituted tosyl starch prepared in DMSO

Fig. S23 FTIR spectra of phthalimide-substituted tosyl starch prepared in DMSO

Table S3 FTIR peak assignments of phthalimide-substituted tosyl starch prepared in DMSO

ū(cm⁻¹)	Vibrational Mode
3600-3000	O–H stretching
2921	CH ₂ , CH ₃ stretching
1773, 1713	Cyclic imide stretching
1643	Aromatic C=C bending
1584, 1563	α,β -unsaturated C=O stretching
1370	Symmetric S=O stretching
1175	Asymmetric S=O stretching
814, 666	Aromatic C=C bending

Fig. S24 FTIR spectra of azide-substituted tosyl starch prepared in NaOH-urea-Brij® 30

Table S4 FTIR peak assignments of azide-substituted tosyl starch prepared in NaOH-urea-Brij® 30

Ū(cm⁻¹)	Vibrational Mode	
3600-3000	O–H stretching	
2924	CH ₂ , CH ₃ stretching	
2114	Azide N=N=N stretching	
1359	Symmetric S=O stretching	
1175	Asymmetric S=O stretching	
813, 665	Aromatic C=C bending	

6.4 Phthalimide-substituted tosyl starch prepared in NaOH-urea-Brij® 30

Fig. S25 FTIR spectra of phthalimide-substituted tosyl starch prepared in NaOH-urea-Brij® 30

Table S5 FTIR peak assignments of phthalimide-substituted tosyl starch prepared in NaOH-urea-Brij® 30

Ū(cm⁻¹)	Vibrational Mode
3600-3000	O–H stretching
2925	CH ₂ , CH ₃ stretching
1357	Symmetric S=O stretching
1174	Asymmetric S=O stretching
812, 664	Aromatic C=C bending

7 Thermogravimetric analysis curves of starch samples

7.1 Native starch

Fig. S26 TGA curve of native starch recorded under a N_2 flow with a heating rate of 10 °C min⁻¹

7.2 Tosyl starch ($DS_{Tos} = 0.33$)

Fig. S27 TGA curve of tosyl starch (DS_{Tos} = 0.33) recorded under a N₂ flow with a heating rate of 10 °C min⁻¹

7.3 Tosyl starch ($DS_{Tos} = 0.54$)

Fig. S28 TGA curve of tosyl starch (DS_{Tos} = 0.54) recorded under a N₂ flow with a heating rate of 10 °C min⁻¹

7.4 Tosyl starch ($DS_{Tos} = 0.62$)

Fig. S29 TGA curve of tosyl starch (DS_{Tos} = 0.62) recorded under a N₂ flow with a heating rate of 10 °C min⁻¹

7.5 Tosyl starch ($DS_{Tos} = 0.65$)

Fig. S30 TGA curve of tosyl starch (DS_{Tos} = 0.65) recorded under a N₂ flow with a heating rate of 10 °C min⁻¹