Supplementary Information for:

A new supramolecular semi-conductor palladium (II) complex [(CH₃)₃N(CH₂)₃Br]₂Pd₂Cl₆: Structural study, optical and electrical properties

Imen Dakhlaoui ^a, Karim Karoui ^{b, c}, Fadhel Hajlaoui ^d, Nathalie Audebrand ^e, Marie Dallon^e, Fathi Jomni ^a

^a Université de Tunis El Manar, Laboratoire LMOP, LR99ES17, El Manar, 2092 Tunis, Tunisia

- ^b Laboratoire des caractérisations spectroscopiques et optique des matériaux, Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Université de Sfax, Tunisia
- ° Greman UMR 7347-CNRS, CEA, INSACVL, University of Tours, Blois, France

^d Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Université de Sfax, Tunisia

^e Univ Rennes, CNRS, INSA Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR
6226, F-35000 Rennes, France

*Corresponding Authors' E-mail: karouikarim36@yahoo.com

Table of Content:

Table S1. Selected bond distances (Å) and angles (°) for [(CH₃)₃N(CH₂)₃Br]₂Pd₂Cl₆.

Table S2. Hydrogen-bonding geometry (Å, °) for [(CH₃)₃N(CH₂)₃Br]₂Pd₂Cl₆.

Distances (Å)		Angles (°)	
Pd1-Cl1	2.267(4)	C12-Pd1-C11	92.14(16)
Pd1-Cl2	2.264(4)	C12-Pd1-C13 ⁽ⁱ⁾	176.91(19)
Pd1-C13	2.321(5)	C11-Pd1-C13 ⁽ⁱ⁾	90.78(17)
Pd1-C13(i)	2.306(5)	C12-Pd1-C13	90.84(17)
Pd2-Cl4	2.273(4)	C11-Pd1-C13	177.02(18)
Pd2-C15	2.264(4)	C13(i)–Pd1–C13	86.23(18)
Pd2 C16	2.329(4)	Pd1 ⁽ⁱ⁾ -C13-Pd1	93.77(18)
Pd2-Cl6 ⁽ⁱⁱ⁾	2.335(4)	C15-Pd2-C14	91.81(16)
N1-C6	1.49(2)	C15-Pd2-C16	91.74(15)
N1-C3	1.50(2)	Cl4-Pd2-Cl6	176.39(16)
N1-C5	1.503(18)	C15-Pd2-C16(ii)	176.04(17)
N1-C4	1.51(2)	Cl4-Pd2-Cl6(ii)	90.97(15)
C1-C2	1.53(2)	C16-Pd2-C16(ii)	85.45(14)
C2-C3	1.49(2)	Pd2-C16-Pd2 ⁽ⁱⁱ⁾	94.55(14)
Br2A-C7A	1.97(5)	C6-N1-C3	109.5(13)
Br1-C1	1.950(17)	C6-N1-C5	108.1(13)
C7A-C8A	1.49(5)	C3-N1-C5	112.8(13)
C8A-C9A	1.14(4)	C6-N1-C4	107.0(13)
C9A-N2A	1.73(6)	C3-N1-C4	110.1(13)
N2A-C12A	1.37(6)	C5-N1-C4	109.1(12)
N2A-C10A	1.46(8)	C2-C1-Br1	112.1(13)
N2A-C11A	1.55(6)	C3-C2-C1	112.6(16)
Br2B-C7B	1.90(4)	C2-C3-N1	116.1(13)
C7B-C8B	1.55(5)	C8B-C7B-Br2B	110(2)
C8B-C9B	1.37(4)	N2B-C9B-C8B	139(4)
C9B-N2B	1.37(6)	C9B-N2B-C10B	116(5)
N2B - C11B	1.42(7)	C9B-N2B-C12B	107(4)
N2B-C10B	1.52(8)	C10B-N2B-C12B	101(4)
N2B-C12B	1.68(6)	C8A-C7A-Br2A	110(3)
		C9A-C8A-C7A	118(4)
		C8A-C9A-N2A	126(3)
		C12A-N2A-C10A	116(5)

 $\label{eq:tables} \textbf{Table S1.} Selected \ bond \ distances \ (\mbox{\ensuremath{\Lambda}}) \ and \ angles \ (\mbox{\ensuremath{\circ}}) \ for[(CH_3)_3N(CH_2)_3Br]_2Pd_2Cl_6.$

C12A-N2A-C11A C10A-N2A-C11A

C12A-N2A-C9A

C10A-N2A-C9A

C11A-N2A-C9A C9B-C8B-C7B

C9B-N2B-C11B

C11B-N2B-C10B

111(4)

114(4)

106(3)

112(4) 96(3)

124(3)

125(5)

105(5)

C11B-N2B-C12B	101(4)
Br1-C1-C2-C3	61(2)
C4-N1-C3-C2	64.0(19)
C8A-C9A-N2A-C12A	136(4)
C7B-C8B-C9B-N2B	136(5)
C8B-C9B-N2B-C12B	132(5)
C1-C2-C3-N1	170.9(15)
Br2A-C7A-C8A-C9A	104(4)
Br2B-C7B-C8B-C9B	167(3)
C8B-C9B-N2B-C11B	112(7)

Symmetry codes: (i) -x, -y+1, -z+3; (ii) -x+1, -y+1, -z+2.

Table S2. H	ydrogen-bonding	geometry (Å, °)) for $[(CH_3)_3N(CH_3))_3N(CH_3)_3N(CH_3)_3N(CH_3))_3N(CH_3))_3N(CH_3)(CH_3))_3N(CH_3)))_3N(CH_3))_3N(CH_3))_3N(CH_3)))_3N(CH_3)))_3N(CH_3)))_3N(CH_3))))))))))))))))))))))))))))))))))))$	$(H_2)_3Br]_2Pd_2Cl_6.$

<i>D</i> —H··· <i>A</i>	D —Н	H···A	D ····A	D —H···A
C1—H1A···Cl5	0.99	2.84	3.74 (2)	151
$C1$ — $H1B$ ···C $15^{(i)}$	0.99	2.82	3.554 (19)	131
C3—H3 <i>A</i> ···Cl4	0.99	2.95	3.860 (17)	153
C3—H3 <i>B</i> ···Cl1 ⁽ⁱⁱ⁾	0.99	2.90	3.814 (17)	153
C4—H4 <i>A</i> ···Cl4 (iii)	0.98	2.85	3.737 (19)	152
C4—H4 <i>B</i> ···Cl1 ⁽ⁱⁱ⁾	0.98	2.81	3.759 (18)	163
C4—H4 C ···Cl6 ^(iv)	0.98	2.91	3.863 (18)	164
C5—H5 <i>B</i> ···C15 (iii)	0.98	2.94	3.830 (16)	152
C5—H5 C ···Cl6 ^(iv)	0.98	2.98	3.917 (17)	160
C6—H6 <i>B</i> ···Cl2 ⁽ⁱⁱ⁾	0.98	2.79	3.669 (19)	150
C7A— $H7A$ ···Cl3 ^(v)	0.99	2.74	3.69 (5)	160
$C7A$ — $H7B$ ···· $C11^{(vi)}$	0.99	2.98	3.95 (5)	168
C7 <i>A</i> —H7 <i>B</i> ···Cl3 ^(vii)	0.99	2.72	3.31 (5)	119
C8A—H8A…C13 ^(vii)	0.99	2.26	3.02 (3)	133
C9 <i>A</i> —H9 <i>B</i> ···Cl3 ^(v)	0.99	2.98	3.63 (3)	125
C10 <i>A</i> —H10 <i>A</i> ···Cl1 ⁽ⁱⁱ⁾	0.98	2.79	3.44 (8)	124
C10 <i>A</i> —H10 <i>A</i> ···Cl2 ⁽ⁱⁱ⁾	0.98	2.72	3.67 (7)	163
C10 <i>A</i> —H10 <i>B</i> ···Cl2 ^(vii)	0.98	2.84	3.66 (7)	141
C10 <i>A</i> —H10 <i>C</i> ···Cl4	0.98	2.96	3.83 (7)	148
C11 <i>A</i> —H11 <i>A</i> ···Cl4	0.98	2.60	3.52 (5)	157
C11 <i>A</i> —H11 <i>C</i> ···Br1 ^(viii)	0.98	3.09	3.66 (5)	119
C11A— $H11C$ ··· $C11$ ^(ix)	0.98	2.74	3.65 (5)	156
$C12A$ — $H12B$ ···· $C11^{(ix)}$	0.98	2.76	3.65 (4)	151
C12 <i>A</i> —H12 <i>C</i> ···Cl2 ⁽ⁱⁱ⁾	0.98	2.78	3.69 (4)	153
C7B— $H7C$ ···Cl3(v)	0.99	2.66	3.53 (4)	147
C10 <i>B</i> —H10 <i>D</i> ····Cl2 ^(vii)	0.98	2.69	3.48 (6)	138
C10 <i>B</i> —H10 <i>E</i> ···Cl4	0.98	2.82	3.73 (6)	155
C10 <i>B</i> —H10 <i>F</i> ···Cl1 ⁽ⁱⁱ⁾	0.98	2.84	3.55 (7)	130

C10 <i>B</i> —H10 <i>F</i> ····Cl2 ⁽ⁱⁱ⁾	0.98	2.96	3.88 (7)	157	
$C11B$ — $H11D$ ···C $l1^{(ix)}$	0.98	2.88	3.71 (6)	142	
C11 <i>B</i> —H11 <i>E</i> ····Cl4	0.98	2.88	3.76 (5)	150	
C11 <i>B</i> —H11 <i>F</i> ····Cl2 ^(vii)	0.98	2.96	3.86 (6)	152	
C12 <i>B</i> —H12 <i>D</i> ···Br1 ⁽ⁱⁱⁱ⁾	0.98	3.03	3.65 (3)	123	
C12 <i>B</i> —H12 <i>E</i> ····Cl4	0.98	2.77	3.70 (4)	158	
$C12B$ — $H12F$ ···· $C11^{(ix)}$	0.98	2.89	3.77 (4)	150	

Symmetry codes:(i) -x+1, y+1/2, -z+3/2; (ii) -x, y+1/2, -z+5/2; (iii) x, -y+3/2, z+1/2; (iv) -x+1, -y+2, -z+2; (v) x, -y+1/2, z-1/2; (vi) x, y, z-1; (vii) -x, -y+1, -z+2; (viii) x, y-1, z; (ix) -x, y-1/2, -z+5/2.

Alert level C PLAT082_ALERT_2_C High R1 Value 0.11 Report

Author Response: A combination of the weak quality of the data and disordered organic molecule contribute to this alert.