Supporting Information

Morphology control synthesis of [Mo₃S₁₃]²⁻/Co-MOF-74 composite

catalysts and their application in the oxygen evolution reaction

Jianxia Gu^{a*}, Jingting He^b, Haiyan Zheng^b, Chunyi Sun^{b*}

^aDepartment of chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China ^bNational & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China.

Figures

Fig. S1 (a) X-ray diffraction patterns (XRD) of Co-MOF-74, Co-MOF-74/[Mo₃S₁₃]²⁻ (1), Co-MOF-74/[Mo₃S₁₃]²⁻ (2), and Co-MOF-74/[Mo₃S₁₃]²⁻ (3). (b) XRD patterns of $[Mo_3S_{13}]^{2-}$ and a standard card of $(NH_4)_2Mo_3S_{13} \cdot nH_2O$ (JCPDS 76-2038). (c) Fourier transformed infrared (FT-IR) spectra of Co-MOF-74/[Mo₃S₁₃]²⁻ (1), Co-MOF-74/[Mo₃S₁₃]²⁻ (2), and Co-MOF-74/[Mo₃S₁₃]²⁻ (3).

Fig. S2 (a-d) The EDS elemental mapping for $[Mo_3S_{13}]^2$ -/Co-MOF-74 (2).

Fig. S3 The survey X-ray photoelectron spectroscopy (XPS) spectra of Co-MOF-74 (a) and $[Mo_3S_{13}]^2$ -/Co-MOF-74 (2) (b). The high-resolution XPS spectra of Mo 3d (c) and S 2p (d) in the $[Mo_3S_{13}]^2$ and $[Mo_3S_{13}]^2$ -/Co-MOF-74 (2).

Fig. S4 The CV curves under different scan rates (40 mV/s to 80 mV/s) for $[Mo_3S_{13}]^{2-}$ (a), Co-MOF-74 (b), $[Mo_3S_{13}]^{2-}$ /Co-MOF-74 (1) (c), $[Mo_3S_{13}]^{2-}$ /Co-MOF-74 (2) (d) and $[Mo_3S_{13}]^{2-}$ /Co-MOF-74 (3) (e) in 1 M KOH.

Fig. S5 (a) Scanning electron microscopy (SEM) image of Co-MOF-74 with spindle morphology. (b) LSV curves of Co-MOF-74 and $[Mo_3S_{13}]^{2-}$ /Co-MOF-74 (2) with different morphologies in 1 M KOH solution.

Table S1 The molar ratios of Mo and Co in different catalysts were determined by inductively coupled plasma mass spectrometry (ICP-MS).

Samples	Feeding molar ratio	Final molar ratio
	(Mo/Co)	(Mo/Co)
Co-MOF-74	0	0
[Mo ₃ S ₁₃] ²⁻ /Co-MOF-74 (1)	0.07	0.05
[Mo ₃ S ₁₃] ² /Co-MOF-74 ⁻ (2)	0.2	0.07
[Mo ₃ S ₁₃] ²⁻ /Co-MOF-74 (3)	0.4	0.2

			Over potential	Tafer	
Catalyst	Electrodes	Electrolyte	$(10 \text{ mA/cm}^2) \text{ vs.}$	slope	Dof
			RHE	(mV dec-	Kel.
			(V)	1)	
Fe/Co NH ₂ BDC	FTO	1M KOH	0.520	101	1
MOF					
RuO ₂	СР	1 M KOH	0.405	126	2
Ni BTC	СР	1 M KOH	0.346	64	2
N-doped	RDE	1 M KOH	0.340	71	3
Graphene CoO					
Co NPs/N-C-800	RDE	1 M KOH	0.379	61.4	4
Co-BTC	GCE	1 M KOH	0.386	84.78	5
ZIF-67@POM	GCE	1 M KOH	0.490	88	6
CoOx-ZIF	GCE	0.1M	0.318	70.3	7
		NaOH			
Co-ZIF-9	FTO	0.1 KOH	0.510	93	8
			$@1mA cm^{-2}$		
ZIF-67@NPC-2	RDE	0.1 M	0.410	114	9
(2:1) КОН					
CoP/NCNHP	GCE	1 M KOH	0.310	70	10
Mo-N/C@MoS ₂	GCE	1 M KOH	0.390	72	11
NNU-23	CC	0.1 M	0.365	81.8	12
		КОН			
Co6Mo6C2@NCN	GCE	1 M KOH	0.361	48.37	13
T-800					
FeNi-MOF-74	NF	1 M KOH	0.223	71.6	14
	(Ni foam)				
NiFc-MOF	NF	1 M KOH	0.195	44.1	15
Cu-Fe-NH ₂ MOF	NF	1 M KOH	0.33	60.8	16
$@500 \text{ mA cm}^{-2}$					
NiCo-UMOFNs	GCE	1 M KOH	0.189	42	17
[Mo ₃ S ₁₃] ²⁻ /Co-	GCE	1 M KOH	0.368	90.6	This
MOF-74 (2)					work

Table S2 Comparison of OER catalytic performance of some reported electrocatalystsand $[Mo_3S_{13}]^{2-}$ /Co-MOF -74 in alkaline solution.

References

- S1 B. Iqbal, M. Saleem, S. N. Arshad, J. Rashid, N. Hussain and M. Zaheer, *Chemistry*, 2019, **25**, 10490-10498.
- S2 V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy and S. Muralidharan, *Chemelectrochem*, 2018, **5**, 2795-2807.
- S3 S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- S4 Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen and C. Li, *Nanoscale*, 2014, 6, 15080-15089.
- S5 L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, M. Sohail, N. Zaman and M. Usman, *Renew* Energ, 2020, **156**, 1040-1054.
- S6 Y. Wang, Y. Y. Wang, L. Zhang, C. S. Liu and H. Pang, *Inorg. Chem. Front.*, 2019, 6, 2514-2520.
- S7 S. Dou, C. L. Dong, Z. Hu, Y. C. Huang, J. I. Chen, L. Tao, D. Yan, D. Chen, S. Shen, S. Chou and S. Wang, *Adv. Funct. Mater.*, 2017, 27, 1702546.
- S8 S. Wang, Y. Hou, S. Lin and X. Wang, Nanoscale, 2014, 6, 9930-9934.
- S9 H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye and D.-J. Liu, Appl. Catal. B Environ., 2017, 205, 55-67.
- S10 Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen and Y. D. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610-2618.
- S11 I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang and S. Mu, *Adv. Funct. Mater.*, 2017, 27, 1702300.
- S12 X. L. Wang, L. Z. Dong, M. Qiao, Y. J. Tang, J. Liu, Y. Li, S. L. Li, J. X. Su and Y. Q. Lan, Angew. Chem. Int. Ed., 2018, 57, 9660-9664.
- S13 X. Feng, X. Bo and L. Guo, J. Colloid Interface Sci., 2020, 575, 69-77.
- S14 J. Xing, K. Guo, Z. Zou, M. Cai, J. Du and C. Xu, Chem. Commun., 2018, 54, 7046-7049.
- S15 J. Liang, X. Gao, B. Guo, Y. Ding, J. Yan, Z. Guo, E. C. M. Tse and J. Liu, Angew. Chem. Int. Ed., 2021, 60, 12770-12774.

- S16 N. K. Shrestha, S. A. Patil, S. Cho, Y. Jo, H. Kim and H. Im, J. Mater. Chem. A, 2020, 8, 24408-24418.
- S17 S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z. Tang, *Nat. Energy*, 2016, 1, 16184.