One-step electrodeposition preparation of NiCoSe₂@Carbon cloth as flexible supercapacitor electrode material

Yi Jiang^{1*}, Bin Cai², Ruixiang Xu¹, Hao Gu², Xin Qi¹, Zhenjun Xu¹, Jing Xu¹, Guosong

 Liu^{l*}

¹School of Science, Changchun Institute of Technology, Changchun, 130012, China

²Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced

Institute of Materials Science, Changchun University of Technology, Changchun,

Changchun 130012, China

* jiangyi@ccit.edu.cn; * liuguosong@ccit.edu.cn;

*To whom all correspondence should be addressed.

1.1. Materials preparation

NiCl₂·6H₂O (metals basis, purity \geq 99.9%), CoCl₂·6H₂O (AR), SeO₂ (AR,

purity \geq 99%), LiCl (purity \geq 99%) were obtained from aladdin.All chemicals and reagents in the study were used without any further purification.The solvent in the experiment was deionized water.

1.2 Characterization

The materials were characterized by scanning electron microscope (SEM, JSM-IT510), X-ray diffraction (XRD, Rigaku D/MAX 2500PC), X-ray Photoelectron Spectroscopy (XPS, VG ESCALAB MKII spectrometer).

Figure S1. SEM of Carbon Cloth.

Figure S2. CV and GCD of Carbon Cloth.

Figure S3. Electrodeposition at 30°C.

Figure S4. Electrodeposition at 50°C.

Figure S5. XPS patterns of NiCoSe2@CC.

Figure S6. CV and GCD of the AC@CC.

Figure S7. SEM of the NiCoSe₂@CC after the cycle.

The specific capacity (C_s ,mF cm⁻²) and specific capacitance (C_m , F g⁻¹) of the materials was calculated from the GCD curves using Eq. S1 and Eq. S2, as follow:

$$C_{s} = \frac{I \times \Delta t}{s \times \Delta V} \quad (S1)$$
$$C_{m} = \frac{I \times \Delta t}{m \times \Delta V} \quad (S2)$$

where I is the discharge current density (A g^{-1}); *m* represents the mass of active materials grown on CC for three-electrode configurations (g); Δt is the discharge time (s); and ΔV is the potential window (V).

In order to achieve the optimum mass ratio of as-prepared positive electrode to AC negative electrodes, we examined the charge balance using the given equation, $q^+ = q^-$. The mass of the positive electrode and negative electrode was tuned according to the following Eq. S3 and Eq. S4:

$$Q = C \times \Delta V \times m \quad (S3)$$
$$\frac{m^{+}}{m^{-}} = \frac{C_{-} \times \Delta V_{-}}{C_{+} \times \Delta V_{+}} \quad (S4)$$

Where *C* is the specific capacity (investigated through the three-electrode system); + and - represents positive and negative electrodes.

The energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹) of the ASCs were investigated by Eq. S5 and Eq. S6, respectively, as follows:

$$E = \frac{C_m \times \Delta V^2}{2 \times 3.6}$$
(S5)
$$P = \frac{3600 \times E}{\Delta t}$$
(S6)