Kinetic and thermodynamic sorption studies of Fe(III) and Zr(IV) by DFO@Purolite, a desferrioxamine B based chelating resin

Giancarla Alberti,*a Camilla Zanoni,^a Vittorio Losi,^a Sara Rovertoni,^a Lisa Rita Magnaghi,^a Osian Fonquernie,^b Stéphane Brandès,^b Agnese Amati,^c Jean-Claude Chambron,^c Nicolas Maudoux,^d Raffaela Biesuz,^a and Michel Meyer*^b

- ^a Dipartimento di Chimica Università degli Studi di Pavia, via Taramelli 12, 27100 Pavia, Italy
- ^b Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
- ^c Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 1 rue Blaise Pascal, BP 296 R 8, 67008 Strasbourg Cedex, France
- ^d TrisKem International, 3 rue des Champs Géons, ZAC de l'Éperon, 35170 Bruz, France

Supplementary Information

Contents

I.	Infrared spectroscopy	3
II.	Thermogravimetric analyses (TGA)	4
III.	Scanning electron microscopy (SEM)	5
IV.	Luminescence emission spectroscopy	6
V.	Two-photon microscopy	7
VI.	Auxiliary equilibrium constants	8

I. Infrared spectroscopy

Figure S1. ATR FT-MIR spectra of pristine Purolite[®] ECR8209 (black line) and DFO@Purolite (red line) recorded at a resolution of 4 cm^{-1} .

II. Thermogravimetric analyses (TGA)

Figure S2. Thermograms of pristine Purolite[®] ECR8209 (black line) and DFO@Purolite (red line) recorded under a N₂ (30 mL min⁻¹)/O₂ (10 mL min⁻¹) gas stream at a heating rate of 10 °C min⁻¹.

III. Scanning electron microscopy (SEM)

Figure S3. SEM image of gold-sputtered Purolite[®] ECR8209 resin. Magnification: ×95, working distance: 16.2 mm, acceleration voltage: 15.0 kV, vacuum: 30 Pa.

Figure S4. SEM image of gold-sputtered DFO@Purolite resin. Magnification: ×130, working distance: 8.0 mm, acceleration voltage: 15.0 kV, vacuum: 30 Pa.

IV. Luminescence emission spectroscopy

Figure S5. Emission spectra of a 0.015 M Tb(NO₃)₃ solution in 0.01 M HNO₃ showing the ⁵D₄ \rightarrow ⁷F_J transitions (black line) and of [Tb(DFO)H]⁺ at pH 9.6 (red line). $\lambda_{ex} = 355$ nm.

Figure S6. Emission spectra of pristine Purolite[®] ECR8209 (blue line), DFO@Purolite (red line), and Tb(DFO)@Purolite (black line) resins. The green line corresponds to the Tb(DFO)@Purolite spectrum after subtraction of the DFO@Purolite contribution. $\lambda_{ex} = 355$ nm, entrance and exit slit bandpass: 2 nm.

V. Two-photon microscopy

Figure S7. Two-photon microscopy images of DFO@Purolite (top) and Tb(DFO)@Purolite (bottom) beads showing the autofluorescence of DFO and luminescence of Tb(III), respectively, upon excitation at 750 nm by a NIR laser. Pictures collected on each of the four detection channels (400–492, 500–550, 563–588, 601–657 nm) were merged without any other spectral selection. The 3D z-stack views were constructed by superimposing the resulting images scanned along the depth (100 μ m) of the samples.

VI. Auxiliary equilibrium constants

ietheved nom the database	implemented in t	IIC MILDOBI S	onware.	
	x	У	Z	$\log \beta_{mlh}$
HEDTA ³⁻	0	1	1	11.24
H ₂ EDTA ²⁻	0	1	2	18.04
H ₃ EDTA ⁻	0	1	3	21.19
H ₄ EDTA	0	1	4	23.42
H_5EDTA^+	0	1	5	22.12
H ₆ EDTA ²⁺	0	1	6	21.62
$H_4EDTA_{(s)}$	0	1	4	27.22
Fe(EDTA) ⁻	1	1	0	27.8
Fe(HEDTA)	1	1	1	29.3
Fe(EDTA)(OH) ²⁻	1	1	-1	19.97
Fe ₂ (EDTA) ₂ (OH) ₂ ⁴⁻	2	2	-2	41.8
Fe(OH) ²⁺	1	0	-1	-2.19
$Fe(OH)_2^+$	1	0	-2	-5.67
Fe(OH) ₃	1	0	-3	-12.56
Fe(OH) ₄ ⁻	1	0	-4	-21.6
$Fe_2(OH)_2^{4+}$	2	0	-2	-2.95
Fe ₃ (OH) ₄ ⁵⁺	3	0	_4	-6.3
Fe(OH) _{3(am)}	1	0	-3	-4.891
Fe ₂ O _{3(cr)}	2	0	-6	-0.408
FeOOH _(s)	1	0	-3	-1
Zr(EDTA)	1	1	0	31.1
$Zr(OH)^{3+}$	1	0	-1	0.3
$Zr(OH)_2^{2+}$	1	0	-2	-1.7
$Zr(OH)_{3}^{+}$	1	0	-3	-5.1
Zr(OH) ₄	1	0	_4	-9.7
$Zr_3(OH)_4{}^{8+}$	3	0	_4	-0.6
$Zr_4(OH)_8{}^{8+}$	4	0	-8	6
$ZrO_{2(s)}$	1	0	_4	-1.9

Table S1. Values of the global protonation constants (β°_{01z}) of EDTA⁴⁻, of the hydrolysis (β°_{x0z}) and complex formation constants (β°_{xyz}) with EDTA⁴⁻ of Fe³⁺ and Zr⁴⁺ at infinite dilution retrieved from the database implemented in the MEDUSA software.^{*a*}

^{*a*} I. Puigdomenech, *MEDUSA – Chemical Equilibrium Diagrams Program*, (2010), Royal Institute of Technology: Stockholm, Sweden (https://www.kth.se/che/medusa/).