Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1	Supplementary Information														
2															
3	Effects of indium doping on methanol deep oxidation over Ag/CeO $_{\rm 2}$														
4	Catalyst														
5	Yongli Xiao ^a , Yongdong Chen ^{* a} , Jie Deng ^a , Li Luo ^a , Yue Li ^a and Xinyu Bai ^a														
6	^a College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan														
7	610500. PR of China.														
, 8	*Address correspondence to this author														
0	Address correspondence to this author.														
9	Email: yongdongchen@swpu.edu.cn, Phone, and Fax: +86 02883032863														
10															
11															
12															
13		Ta	hle S1 kinetic	narameters of	methanol oxic	lation									
11		10		1/T*10^-3											
	Catalyst	т/к	1/T (1/K)	(1*10^-3 K ⁻¹)	k/cm ³ ·g ⁻¹ ·s ⁻¹	ln(k)/cm ³ ·g ⁻¹ ·s ⁻¹	Ea/(KJ/mol)								
		359	0.002786	2.785515	2.788881	1.025641	- 66.2								
	1-/6-0	364	0.002747	2.747253	3.503534	1.253772									
	Ag/CeO ₂	369	0.002710	2.710027	4.954755	1.600348									
		374	0.002674	2.673797	6.686150	1.900038									
	-	359	0.002786	2.785515	2.907492	1.067291	- 65.2								
	Ag/Ceo or Ino or Os	364	0.002747	2.747253	3.983991	1.382284									
		369	0.002710	2.710027	5.445153	1.694726									
		374	0.002674	2.673797	6.936970	1.936865									
	$Ag/Ce_{0.90}In_{0.10}O_{\delta}$	359	0.002786	2.785515	5.199531	1.648568	60.7								
		364	0.002747	2.747253	7.694782	2.040542									
		369	0.002710	2.710027	9.756009	2.277883									
		374	0.002674	2.673797	11.878775	2.474753									
	-	359	0.002786	2.785515	4.225443	1.441124									
	Ag/Ce _{0.85} In _{0.15} O _δ	364	0.002747	2.747253	6.436212	1.861940									
	-	369	0.002710	2.710027	8.717927	2.165382									
		374	0.002674	2.673797	10.017915	2.304375									
		359	0.002786	2.785515	2.552251	0.936976									

364

369

374

 $Ag/Ce_{0.80}In_{0.20}O_{\delta}$

0.002747

0.002710

0.002674

2.747253

2.710027

2.673797

3.264518

4.710819

6.187149

1.183112

1.549862

1.822474

67.4

Table S2 The results of three activity tests

Ag/CeO ₂		$Ag/Ce_{0.95}In_{0.05}O_{\delta}$		Ag/Ce _{0.90} In _{0.10} O _{δ}		Ag/Ce _{0.85} In _{0.15} O _{δ}		Ag/Ce _{0.80} In _{0.20} O _δ	
Т/	CH ₃ OH	T/	CH ₃ OH	T/	CH ₃ OH	T/	CH ₃ OH	T/	CH ₃ OH
°C	Conversion	°C	Conversio	°C	Conversion	°C	Conversion	°C	Conversion
	/%		n/%		/%		/%		/%
87	2.6	90	3.7	89	8.9	88	7.9	87	1.1
	3.6		3.7		8.9]	7.8		1.3
	3.1		3.7		8.8	1	7.9		1.1
107	7.7	110	12	110	29.2	110	20.5	110	6.8
	8.8		11.8		29.3		20.4		6.6
	8.7]	12.2		29.2]	20.5		6.8
128	31.5	130	34.5	130	53.3	130	46	130	29.7
	30.5		34.4		53.1		45.9		29.8
	32.5		34.5		53.4		45.9		29.6
149	51.4	150	57.4	150	82.4	150	68.2	150	46.4
	51.9		57.6		82.5		68.1		46.3
	51		57.5		82.4		68.1		46.4
160	66.5	160	71.4	160	92.7	160	77.4	160	52.9
	66.4		71.2		92.6		77.3		52.8
	66.5		71.6		92.7		77.4		52.9
170	78.7	170	80.9	170	97.1	170	82.4	170	69
	78.9		80.8		97.2		82.5		68.9
	78.8		80.9		97.1		82.4		69
190	86	190	89.5	190	98.2	190	91.2	190	78.9
	85.9		89.2		98.1		91.3		78.8
	86		89.5		98.2		91.1		78.9
210	92.8	210	94.5	210	99.1	210	97.4	210	91
	92.7]	94.4		99.1]	97.4		90.9
	92.8		94.5		99.1		97.3		91.1
230	96.8	230	96.4	230	99.2	230	98.6	230	94.7
	96.7		96.4		99.1		98.5		94.6
	96.9		96.3		99.2		98.6		94.7
250	97.7	250	97.7	250	99.4	250	99	250	97.2
	97.7		97.8		99.4		98.9		97.1
	97.6		97.7		99.3		99		97.2

Fig. S2 Catalytic durability of Ag/CeO $_2$ for CH $_3$ OH oxidation at 200 °C.

- and 1:9 respectively.) ¹

29 Fig.S5 Raman spectra of the samples synthesized solvothermal with In/(In+Ce) of 0 (a), 1% (b), 3%

30 (c), 5% (d) and 10% (e) at 200 °C for 24 h followed by calcination at 500 °C for 2 h in air.²

31

28

32

Fig.S6 Lattice parameters of the samples synthesized solvothermal with different In/(In+Ce)²
34

35

36 **Reference**

37 1. Wang, W.; Zhang, Y.; Wang, Z. Y.; Yan, J. M.; Ge, Q. F.; Liu, C. J., Reverse water gas shift 38 over In2O3-CeO2 catalysts. *Catal Today* **2016**, *259*, 402-408.

39 2. Zhang, S.; Xu, Y.; Wang, T.; Li, R.; Cai, H., SOLID SOLUBILITY AND OXYGEN STORAGE 40 CAPABILITY OF In3+-DOPED CeO2. *Acta Metall Sin* **2016**, *52* (5), 607-613.