On the nature of optical activity in chiral transition metal complexes: [Pd(Me)₂(BINAP)] Supporting Information

Natalie Fehn,[†] Melanie Strauss,[†] Christian Jandl, Markus Drees, Ueli Heiz, Klaus Köhler, and Aras Kartouzian^{*}

Department of Chemistry and Catalysis Research Centre, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching bei München, Germany.

⁺ NF and MS contributed equally to this work.

* Corresponding author: aras.kartouzian@mytum.de

Experimental Details

General

All procedures with water and air sensitive substrates were conducted under argon atmosphere (Schlenk, Glovebox). Chemicals were purchased from Sigma Aldrich. [PdCl₂(BINAP)] was synthesized according to literature procedure.^[1,2] Solvents were dried over molecular sieve Å4 and degassed via freeze pumping, afterwards stored under argon atmosphere. The liquid state ¹H-NMR and ³¹P-NMR spectra were recorded on a *400 MHz Bruker Advance DRX400* spectrometer. Samples were dissolved in 0.4 mL of benzene-d6 inside standard NMR tubes. All chemical shifts are given in δ -values (ppm). ¹H-NMR spectra of complexes were calibrated to the solvent signal benzene: 7.16 ppm. UV-VIS and CD spectroscopy were measured at room temperature on a J-815 spectrometer (Jasco) with 50 nm/min with two to three repetitions. Sample concentrations were 0.13 mg/mL for [Pd(Me)₂(R/S-BINAP)]. The toluene solutions were placed into 1 mm quartz capillaries. The IR spectra were collected on a Bruker FT-IR spectrometer inside an argon-purged glove box with an attenuated total reflectance (ATR) setup.

PdMe2(BINAP) – (2,2'–Bis(diphenylphosphino)–1,1'–binaphthyl)dimethylpalladium (II)

As the complexes were not described in the literature yet, we synthesized and structurally characterized the complexes (both enantiomers) for the first time. It was found that the $PdMe_2(BINAP)$ complex decomposes easily to the more stable $Pd^0(BINAP)_2$ depending on synthesis route and reaction conditions. Finally, we decided for the synthesis pathway attaching the BINAP ligands directly to $PdCl_2(CH_3CN)_2$ by substitution of acetonitrile.^[1,2] The $PdCl_2(BINAP)$ complex was subsequently methylated with methyl lithium resulting in $PdMe_2(BINAP)$ (Scheme S1). The final complex $PdMe_2(BINAP)$ was obtained with good purity for the S- and R-BINAP ligands with a yield of 36 %. After purification and re-crystallization, single crystals of $PdMe_2(S-BINAP)$ could be grown and isolated from the colourless solution and the structure of the complex was confirmed by X-ray diffraction (SC-XRD).

To a -35 °C cold solution of PdCl₂(BINAP) (244 mg, 0.11 mmol) in diethyl ether (8 mL) a 1.6 M solution of methyl lithium (0.6 mL, 9.4 mmol) was added dropwise under continuous stirring. The reaction solution was kept at -5 °C until the complete discoloration of the solution could be observed. Afterwards, 5 mL of water was added to the reaction mixture, before it was cooled to -40 °C. The organic layer was separated and dried over MgSO₄. The rest of the solvent was removed under vacuo,

so a light-pink solid was obtained. The solid was solved in 16 mL diethyl ether and stirred for one hour, then 18 mL pentane was added slowly to the solution and kept in the freezer overnight. A colourless precipitate was obtained, which was filtered and dried under vacuo. 85 mg (0.11 mmol, 36 % yield) of $PdMe_2(R-BINAP)$ or $PdMe_2(S-BINAP)$ was obtained and stored at -37 °C.

¹**H-NMR** (400 MHz, C₆D₆, 300 K) δ (ppm) = 1.10 (s, 6H, Pd(*CH*₃)₂), 6.34-6.42 (t, 4H, naphthyl-*CH*), 6.45-6.51 (m, 2H, P*Ph*₂), 6.63-6.69 (m, 4H, P*Ph*₂), 6.92-7.25 (m, 12H, P*Ph*₂), 7.48-7.759 (m, 6H, naphthyl-CH, P*Ph*₂), 7.89-7.97 (m, 4H, naphthyl-*CH*).

³¹**P-NMR** (400 MHz, C₆D₆, 300 K) δ (ppm) = 23.43 (s, 2P, 2P-BINAP).

CD: 300-334 nm, 334-433 nm.

UV-VIS: 300-400 nm.

IR: 3100 cm⁻¹ (Ph-H-*stretch*). 3000 cm⁻¹ (Me-H-*stretch*), 2900 cm⁻¹ (Me-H-*stretch*), 700 cm⁻¹ (P-Pd-P-*bend*).

X-ray Crystallographic Details

Single crystals of PdMe₂(R/S-BINAP) were grown from a toluene solution by slow evaporation and simultaneous diffusion of pentane into it under an argon atmosphere. Data were collected on a single crystal X-ray diffractometer equipped with a CCD detector (Bruker APEX II, κ-CCD), a fine-focus sealed tube with MoK_{α} radiation (λ = 0.71073 Å) and a Triumph monochromator using the APEX2 software package (PdMe₂(S-BINAP)) or a CMOS detector (Bruker Photon-100), a TXS rotating anode with MoK_{α} radiation and a Helios optic using the APEX3 software package (PdMe₂(R-BINAP)).^[3] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT.^[4] Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS.^[4] Space group assignment was based upon systematic absences, E statistics, and successful refinement of the structure. The structures were solved using SHELXT with the aid of successive difference Fourier maps, and were refined against all data using SHELXL in conjunction with SHELXLE.^[5,6] Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{ea(C)}$. Non-methyl H atoms were placed in calculated positions and refined using a riding model with methylene, aromatic, and other C-H distances of 0.99 Å, 0.95 Å and 1.00 Å, respectively, and $U_{iso}(H) = 1.2 \cdot U_{eq}(C)$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_o^2 - F_c^2)^2$ with the SHELXL weighting scheme.^[5] Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[7] Images of the crystal structure were generated with PLATON.^[8] CCDC 2221766-2221767 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Crystallographic Data PdMe₂(S-BINAP) (CCDC 2221766)

Diffractometer operator C. Jandl scanspeed 20 s per frame dx 80 mm 3702 frames measured in 12 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Table S1: Crystal Data PdMe ₂ (S-BINAP)		
$C_{46}H_{38}P_2Pd$		
$M_r = 759.10$	$D_{\rm x} = 1.413 {\rm Mg} {\rm m}^{-3}$	
Monoclinic, <u>P2</u> 1	Melting point: <u>?</u> K	
Hall symbol: <u>P 2yb</u>	<u>Μο Κα</u> radiation, λ = <u>0.71073</u> Å	
<i>a</i> = <u>11.949 (4)</u> Å	Cell parameters from <u>3674</u> reflections	
<i>b</i> = <u>11.507 (4)</u> Å	$\theta = 2.5 - 23.7^{\circ}$	
<i>c</i> = <u>13.750 (4)</u> Å	$\mu = 0.64 \text{ mm}^{-1}$	
β = <u>109.32 (2)</u> °	T = 100 K	
V = <u>1784.1 (10)</u> Å ³	Fragment, colourless	
<i>Z</i> = <u>2</u>	<u>0.19</u> × <u>0.11</u> × <u>0.08</u> mm	
<i>F</i> (000) = <u>780</u>		

Table S2: Data Collection PdMe ₂ (S-BINAP)		
Radiation source: fine-focus sealed tube	<u>5277</u> reflections with $l > 2\sigma(l)$	
Triumph monochromator	$R_{\rm int} = 0.055$	
Detector resolution: <u>16</u> pixels mm ⁻¹	$\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.0^{\circ}$	
phi– and ω–rotation scans	h = -14 14	
Absorption correction: multi-scan	k = -13 13	
<u>SADABS</u> 2016/2, Bruker		
$T_{\rm min} = 0.615, T_{\rm max} = 0.745$	l = -16 16	
15060 measured reflections		

Table S3: Refinement PdMe ₂ (S-BINAP)	
Refinement on <u>F</u> ²	Hydrogen site location: inferred from
	neighbouring sites
Least-squares matrix: <u>full</u>	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	<u>W = $1/[\Sigma^2(FO^2) + (0.023P)^2]$ WHERE P = $(FO^2 + 1)$</u>
	<u>2FC²)/3</u>

$wR(F^2) = 0.069$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = <u>0.99</u>	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
6131 reflections	$\Delta \rho_{min} = -0.52$ e Å ⁻³
444 parameters	Extinction correction: none
<u>1</u> restraint	Extinction coefficient: <u>-</u>
<u>O</u> constraints	Absolute structure: <u>Flack, Parsons^[9,10]</u>
Primary atom site location: iterative	Absolute structure parameter: 0.02 (2)
Secondary atom site location: difference	
Fourier map	

Crystallographic Data PdMe₂(R-BINAP) (CCDC 2221767)

Table S4: Crystal Data PdMe ₂ (R-BINAP)		
$C_{46}H_{38}P_2Pd$		
$M_r = 759.10$	<i>D</i> _x = <u>1.417</u> Mg m ⁻³	
Monoclinic, <u>P2</u> 1	Melting point: <u>?</u> K	
Hall symbol: <u>P 2yb</u>	<u>Mo Kα</u> radiation, $\lambda = 0.71073$ Å	
<i>a</i> = <u>11.8884 (6)</u> Å	Cell parameters from <u>9935</u> reflections	
<i>b</i> = <u>11.4981 (5)</u> Å	θ = <u>2.4</u> – <u>25.7</u> °	
<i>c</i> = <u>13.7715 (7)</u> Å	μ = <u>0.65</u> mm ⁻¹	
β = <u>109.110 (2)</u> °	<i>T</i> = <u>103</u> K	
<i>V</i> = <u>1778.74 (15)</u> Å ³	Fragment, colourless	
<i>Z</i> = <u>2</u>	<u>0.29</u> × <u>0.05</u> × <u>0.02</u> mm	
<i>F</i> (000) = <u>780</u>		

Table S5: Data Collection PdMe ₂ (R-BINAP)		
Bruker Photon CMOS	6493 independent reflections	
diffractometer		
Radiation source: TXS rotating anode	<u>5995</u> reflections with <u><i>l</i> > 2σ(<i>l</i>)</u>	
Helios optic monochromator	$R_{\rm int} = 0.068$	
Detector resolution: <u>16</u> pixels mm ⁻¹	$\theta_{max} = \underline{25.4}^\circ, \ \theta_{min} = \underline{2.4}^\circ$	

phi– and ω–rotation scans	h = -14 14	
Absorption correction: multi-scan	k = -13 13	
<u>SADABS 2016/2, Bruker</u>		
$T_{\rm min} = 0.679, T_{\rm max} = 0.745$	/ = <u>-16</u> <u>16</u>	
39950 measured reflections		

Table S6: Refinement PdMe ₂ (R-BINAP)		
Refinement on <u>F</u> ²	Hydrogen site location: inferred from	
	neighbouring sites	
Least-squares matrix: <u>full</u>	H-atom parameters constrained	
$R[F^2 > 2\sigma(F^2)] = 0.027$	<u>W = $1/[\Sigma^2(FO^2) + (0.0201P)^2 + 0.5977P]$ WHERE</u>	
	$\underline{P = (FO^2 + 2FC^2)/3}$	
$wR(F^2) = 0.053$	$(\Delta/\sigma)_{max} = 0.001$	
S = 1.05	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$	
6493 reflections	$\Delta \rho_{min} = -0.41$ e Å ⁻³	
444 parameters	Extinction correction: none	
<u>1</u> restraint	Extinction coefficient: <u>-</u>	
<u>O</u> constraints	Absolute structure: Flack, Parsons ^[9,10]	
Primary atom site location: iterative	Absolute structure parameter: <u>-0.034 (12)</u>	
Secondary atom site location: difference		
Fourier map		

Computational Methods

All calculations were obtained by the Gaussian[®]16 program.^[11] The DFT functional B3LYP was used for all calculations, where two basis sets were considered. The carbon, hydrogen, oxygen, phosphorus, and silicon atoms were calculated with the basis set of 6-311++g*. The metal centre Pd was calculated with the basis set LanL2DZ split valence. For this study, the obtained molecules were geometry optimized and afterwards a frequency calculation took place. For the calculation of absorption and CD spectra, the TD-SCF method was used, and 40 single-excited-states were calculated. All calculations were obtained at a FUJITSU CELSIUS Workstation with an Intel[®] Xeon[®] E-2136 CPU with 3.31 GHz and 64 GB RAM. The system runs on Windows 10 Pro for workstations. Geometry optimization and excited states can be found in Table S9-Table S14.

Structural aspects of the DFT calculations

As already mentioned, the two structures origin from two distinct DFT optimizations. They converge in different minima of the energy hypersurface and, thus, are of different structural parameters. Table S7 compares zero-point energy, enthalpy, and Gibb's free energy of the two optimized structures. It becomes evident that both optimizations lead to indistinguishable local minima in the hypersurface from an energetic point of view. Figure S1 shows the two optimized geometries in a comparing manner. At first glance, structure A and structure B are very similar in geometry (Figure S1), in addition to their energetic properties (Table S7).

Table S7. Energetic minima by DFT for two distinct geometry optimizations of [Pd(Me) ₂ (BINAP)]			
Energetic property (kJ/mol)	Structure A	Structure B	
Zero-point energy	-2584.99	-2584.99	
Enthalpy	-2584.94	-2584.94	
Gibbs' free energy	-2585.07	-2585.06	

At a closer look, however, the phenyl groups located at the phosphorous atoms are oriented in a different manner, as seen most obviously in the right part of the representations (highlighted in the top part of Figure S1). Furthermore, it becomes clear from the side view of the complexes in the bottom part of Figure S1 that the atoms of the BINAP ligand are evenly distributed (non-evenly distributed) across the Pd-P-P plane for structure A (B), additionally witnessed by the dihedral angles around the coordination sphere, i.e. Pd centre, coordinating P, and C atoms of BINAP that bind to coordinating P. An additional view on the top of the molecule can be found in Figure S2. The close to square-planar coordination sphere of Pd is not impeded by this for both structures. To this end, small changes in the geometry then lead to variations in the electronic structure and thus modify all electronic transitions. Importantly, the calculated rotatory strengths are much more affected than the oscillator strengths.^[12]

Figure S1. Views on the two distinct geometry optimizations A (left) and B (right) of the complex $[Pd(Me)_2(BINAP)]$, from the front (top) and side (bottom) of the compound. Colour code: turquoise (Pd), orange (P), grey (C), white (H).

T	Table S8: Occurrence of molecular orbitals for calculated structures A (left) and B (right), full set				
	MO number A	Occurrence A (%)	MO number B	Occurrence B (%)	
	172	3.1	171	1.3	
	173	6.3	172	4.2	
	174	0.2	173	2.6	
	175	7.5	174	2.5	
	176	7.7	175	10.2	
	177	5.5	176	12.1	
	178	9.6	177	4.6	
	179	19.1	178	5.8	
	180	21.8	179	17.8	
	181	19.4	180	15.8	
	182	21.8	181	23.1	
	183	21.1	182	28.9	
	184	17.8	183	18.7	
	185	9.5	184	12.8	
	186	6.1	185	12.2	
	187	4.6	186	5.1	
	188	4.2	187	6.9	
	189	4.4	188	2.1	
	190	0.0	189	2.2	
	191	0.2	190	1.3	
	192	0.2	191	0.1	
	193	1.2	192	2.9	
	194	0.1	193	0.2	
	195	2.1	194	1.4	
	196	3.2	195	2.6	
	197	0.1	196	0.4	
	198	1.2	197	0.0	
	199	0.4	198	0.8	
	205	1.6	201	0.3	
	206	0.2	203	0.8	
			205	0.3	

Occurrence of molecular orbitals

Occupied and unoccupied orbital representations of structure A and B

Α

contributions of selected CD-active electronic transitions of optimised structure A and B of the complex [PdMe2BINAP] (iso value 0.02). Colour code: turquoise (Pd), orange (P), grey (C), white (H).

Calculations for structure A

Table S9: Through DFT obtained zero-point energy (E), enthalpy (H) and Gibbs free energy (G) of			
structure A in kJ/mol			
E	н	G	
-2584.99	-2584.94	-2585.07	1

Table S10: Through DFT obtained geometry of structure A		
Center	Atomic	Coordinates (Angstroms)

Number	Number	Х	Y	Z
1	6	-0.979817	-4.675577	-3.382094
2	6	-0.030475	-3.766416	-3.777054
3	6	0.40497	-2.738218	-2.90036
4	6	-0.153805	-2.636473	-1.588218
5	6	-1.137394	-3.597289	-1.218541
6	6	-1.536085	-4.585787	-2.086077
7	1	1.840083	-1.886457	-4.275887
8	1	-1.30273	-5.461299	-4.057655
9	1	0.407496	-3.822138	-4.769489
10	6	1.398106	-1.810211	-3.286458
11	6	0.287782	-1.594682	-0.696287
12	1	-1.579052	-3.552494	-0.231697
13	1	-2.285487	-5.305702	-1.772022
14	6	1.26842	-0.694629	-1.118014
15	6	1.812523	-0.828885	-2.426564
16	1	2.581291	-0.143179	-2.754504
17	6	-0.286893	-1.595274	0.695121
18	6	0.156153	-2.636816	1.586657
19	6	-1.268688	-0.696646	1.117269
20	6	-0.40241	-2.739843	2.898789
21	6	-1.812529	-0.832213	2.425802
22	6	1.540895	-4.584614	2.083596
23	6	0.034395	-3.767848	3.775027
24	6	-1.396768	-1.813321	3.285286
25	1	-2.582233	-0.147724	2.754077
26	6	0.984844	-4.675653	3.37961
27	1	2.291188	-5.303445	1.769187
28	1	-0.403433	-3.824531	4.767471
29	1	-1.838621	-1.890551	4.274694
30	1	1.308793	-5.461253	4.054817
31	6	3.240233	1.453974	-1.043133
32	6	4.56162	1.136796	-0.70959
33	6	3.010743	2.325118	-2.11798
34	6	5.625324	1.662826	-1.443529
35	1	4.77305	0.488066	0.131387
36	6	4.071476	2.839725	-2.858053

	Center	Atomic	Coordinates (Angstroms)
--	--------	--------	-------------------------

37	1	1.994075	2.612677	-2.363246
38	6	5.384158	2.509191	-2.522806
39	1	6.644018	1.410635	-1.165512
40	1	3.872658	3.512933	-3.685976
41	1	6.212889	2.919248	-3.09143
42	15	1.758416	0.814267	-0.125218
43	6	2.478103	0.197116	1.455358
44	6	3.238402	-0.974095	1.56028
45	6	2.291757	0.98975	2.595343
46	6	3.806048	-1.341662	2.777931
47	1	3.383784	-1.606236	0.691103
48	6	2.865028	0.624001	3.811873
49	1	1.696135	1.894036	2.523143
50	6	3.6235	-0.54137	3.90505
51	1	4.385121	-2.256909	2.847713
52	1	2.714307	1.24818	4.687015
53	1	4.066773	-0.828903	4.853294
54	15	-1.760129	0.81312	0.126409
55	6	-3.245834	1.447315	1.041958
56	6	-4.565539	1.126866	0.704815
57	6	-3.02141	2.317388	2.118738
58	6	-5.63247	1.648592	1.437115
59	1	-4.77316	0.478908	-0.137696
60	6	-4.085374	2.827737	2.857143
61	1	-2.006174	2.60747	2.366867
62	6	-5.396291	2.493925	2.518313
63	1	-6.649772	1.39386	1.156328
64	1	-3.890434	3.500207	3.686585
65	1	-6.227538	2.900663	3.085648
66	6	-2.474706	0.198536	-1.457465
67	6	-3.231662	-0.974349	-1.567595
68	6	-2.288189	0.995214	-2.594611
69	6	-3.795742	-1.339712	-2.787563
70				
70	1	-3.37717	-1.609548	-0.700687

Center	Atomic	Coordinates (Angstroms)

72	1	-1.695219	1.900924	-2.518401
73	6	-3.613043	-0.53544	-3.91182
74	1	-4.372136	-2.25633	-2.861367
75	1	-2.707178	1.259038	-4.68633
76	1	-4.053561	-0.82124	-4.86187
77	6	1.140942	-3.59622	1.216526
78	1	1.582426	-3.550455	0.229654
79	46	-0.001132	2.492559	0.00498
80	6	-1.361555	4.092195	-0.134667
81	1	-1.42691	4.604403	0.828481
82	1	-0.996428	4.803277	-0.878243
83	1	-2.361423	3.756782	-0.419291
84	6	1.36073	4.090362	0.152657
85	1	2.36021	3.752834	0.436214
86	1	1.42703	4.606452	-0.808346
87	1	0.996092	4.798699	0.899079

Table S11: Calculated excited states of structure A, their crossings, rotatory strengths, energies in]
eV and n	m, and their os	scillator strength				
Excited	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength	f
State						
1	181 → 182	0.70176	2.7716	447.34	0.00)17
2	181 → 183	0.70382	2.9913	414.48	0.00)03
3	179 → 182	0.63842	3.4176	362.78	0.01	.15
	180 → 182	0.25397				
4	179 → 182	-0.25641	3.4183	362.7	0.02	95
	180 → 182	0.63246				
	181 → 184	-0.11077				
5	180 → 182	0.10882	3.5261	351.62	0.01	.07
	181 → 184	0.64691				
	181 → 186	0.23640				
6	181 → 185	0.69823	3.538	350.44	0.00	02
7	180 → 183	0.69048	3.6023	344.18	0.01	.52
8	178 → 182	-0.25553	3.6474	339.93	0.00)33
	179 → 183	0.62709				
	181 → 186	-0.15707				
9	179 → 183	0.13737	3.6974	335.33	0.00)41
	$181 \rightarrow 184$	-0.23506				
	$181 \rightarrow 186$	0.64166				

Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
10	$177 \rightarrow 182$ $181 \rightarrow 187$ $181 \rightarrow 189$	-0.15711 0.65031 -0.19162	3.7543	330.25	0.0041
11	$175 \rightarrow 182$ $177 \rightarrow 182$ $178 \rightarrow 183$ $181 \rightarrow 187$	0.18398 0.63184 -0.10371 0.17372	3.7837	327.68	0.0089
12	$\begin{array}{c} 176 \rightarrow 182 \\ 177 \rightarrow 183 \\ 178 \rightarrow 182 \\ 179 \rightarrow 183 \\ 181 \rightarrow 188 \end{array}$	-0.27932 -0.11608 0.54462 0.18944 -0.17760	3.8155	324.94	0.0265
13	$\begin{array}{c} 175 \rightarrow 182 \\ 177 \rightarrow 182 \\ 178 \rightarrow 183 \\ 181 \rightarrow 187 \\ 181 \rightarrow 189 \end{array}$	0.29105 -0.14434 0.12797 0.13479 0.55243	3.8666	320.66	0.0071
14	$\begin{array}{c} 178 \rightarrow 182 \\ 181 \rightarrow 188 \end{array}$	0.15432 0.66745	3.8952	318.3	0.0145
15	$175 \rightarrow 182$ $178 \rightarrow 183$ $181 \rightarrow 189$	0.43618 0.41521 -0.30850	3.9655	312.66	0.0008
16	$176 \rightarrow 182$ $177 \rightarrow 183$ $178 \rightarrow 182$ $179 \rightarrow 183$	0.57615 -0.27850 0.20032 0.13394	3.9698	312.32	0.0101
17	$181 \rightarrow 190$	0.69468	3.9903	310.72	0.0015
18	$175 \rightarrow 182$ $177 \rightarrow 182$ $178 \rightarrow 183$ $180 \rightarrow 184$ $181 \rightarrow 189$	-0.36101 0.15545 0.51727 0.13448 0.12348	4.0522	305.97	0.0526
19	$176 \rightarrow 182$ $177 \rightarrow 183$ $178 \rightarrow 182$ $179 \rightarrow 184$	0.15584 0.60340 0.20102 -0.13515	4.0645	305.04	0.0004
20	$\begin{array}{c} 181 \rightarrow 191 \\ 181 \rightarrow 192 \end{array}$	0.68084 0.13184	4.0936	302.87	0.0034
21	$176 \rightarrow 183$ $179 \rightarrow 185$ $180 \rightarrow 184$	0.45339 0.12426 0.46226	4.14	299.48	0.0158
22	$175 \rightarrow 1\overline{83}$ $177 \rightarrow 183$ $179 \rightarrow 184$ $180 \rightarrow 185$	0.36574 0.13770 0.33958 0.42276	4.1534	298.51	0.0177

Excited	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
State					
23	175 → 183	-0.35173	4.1679	297.47	0
	$179 \rightarrow 184$	-0.14456			
	$179 \rightarrow 186$	0.16905			
	$180 \rightarrow 185$	0.48675			
	181 → 192	0.18134			
24	174 \ 102	0 5 1 4 5 0	4 176	206.0	0.001
24	$174 \rightarrow 102$	0.01450	4.170	290.9	0.001
	$170 \rightarrow 183$	-0.20748			
	$173 \rightarrow 183$ $180 \rightarrow 184$	0.10995			
	$180 \rightarrow 184$ $180 \rightarrow 186$	0.13049			
	$180 \rightarrow 180$	-0.20850			
	101 / 155	-0.30035			
25	174 → 182	0.43203	4.1796	296.64	0.0029
	176 → 183	0.29218			
	179 → 185	-0.15436			
	$180 \rightarrow 184$	-0.14902			
	$180 \rightarrow 186$	-0.18177			
	$181 \rightarrow 193$	0.29528			
26	176 → 183	-0.26822	4.1882	296.03	0.0146
	$179 \rightarrow 185$	0.13011			
	$180 \rightarrow 184$	0.31402			
	$180 \rightarrow 186$	0.14458			
	181 ightarrow 193	0.50774			
27	$180 \rightarrow 185$	-0.19427	4.2009	295.14	0.0004
	$181 \rightarrow 191$	-0.112//			
	$181 \rightarrow 192$	0.60529			
	181 7 194	0.20711			
28	176 → 183	0.13370	4.2595	291.08	0.0282
	$179 \rightarrow 185$	0.60788			
	180 ightarrow 184	-0.26685			
29	173 → 182	-0 15629	4 2803	289.66	0 0848
	$175 \rightarrow 183$	-0.42312			
	$179 \rightarrow 184$	0.47962			
	$180 \rightarrow 185$	-0.11434			
30	176 → 183	0.16483	4.3254	286.64	0.0545
	$179 \rightarrow 185$	-0.20621			
	$180 \rightarrow 184$	-0.138/4			
	$180 \rightarrow 186$	0.59440			
31	173 → 182	0.20888	4.3416	285.57	0.0001
	175 → 183	0.17266			
	177 → 184	-0.17102			
	179 → 184	0.19146			
	179 → 186	0.52250			
	$180 \rightarrow 185$	-0.14026			
	$180 \rightarrow 187$	0.14628			

Excited	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
State					
32	172 → 182	-0.22535	4.3611	284.3	0.0242
	173 → 183	-0.14947			
	$176 \rightarrow 183$	0.16186			
	$178 \rightarrow 184$	0.16125			
	179 → 187	0.33353			
	179 → 189	0.20842			
	180 ightarrow 184	0.13097			
	180 ightarrow 186	-0.18932			
	181 ightarrow 196	0.15801			
	181 ightarrow 198	0.12841			
	$181 \rightarrow 205$	0.11575			
33	179 → 184	0.11465	4.3996	281.81	0.0003
	179 → 186	-0.21696			
	180 ightarrow 187	0.61867			
	$181 \rightarrow 194$	-0.14024			
24	400 \ 407	0.44524	4 4442	204.07	0.0016
34	$180 \rightarrow 187$	0.14524	4.4112	281.07	0.0016
	$181 \rightarrow 192$	-0.24503			
	$181 \rightarrow 194$	0.59785			
	181 → 197	0.18741			
35	179 → 187	-0.30104	4.4178	280.64	0.0038
	179 → 189	0.15025			
	$181 \rightarrow 195$	0.20754			
	$181 \rightarrow 196$	0.39885			
	$181 \rightarrow 198$	0.25208			
	$181 \rightarrow 205$	0.11460			
	181 → 206	0.13708			
36	179 → 187	0.24105	4.4564	278.22	0.0093
	179 → 189	-0.24127			
	$180 \rightarrow 188$	-0.15534			
	$181 \rightarrow 193$	-0.10813			
	$181 \rightarrow 195$	0.42792			
	181 ightarrow 196	0.14850			
	181 ightarrow 199	-0.22733			
	$181 \rightarrow 205$	-0.18285			
37	$172 \rightarrow 183$	0 11492	4 4796	276 78	0.0002
57	$172 \rightarrow 182$	0.31778		270.70	0.0002
	$177 \rightarrow 184$	-0 20913			
	$178 \rightarrow 187$	-0 15654			
	$179 \rightarrow 184$	0 12141			
	$179 \rightarrow 186$	-0.30194			
	$179 \rightarrow 188$	0.17805			
	$180 \rightarrow 189$	0.30206			
		0.00			
38	$174 \rightarrow 183$	0.69	4.5023	275.38	0.0005

Excited	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
State					
39	172 → 182	-0.13798	4.5228	274.13	0.0354
	173 → 183	-0.11421			
	178 → 184	0.24166			
	179 → 187	-0.24380			
	180 → 188	0.43863			
	181 → 195	0.22131			
	181 → 196	-0.14507			
40	172 → 182	0.10961	4.5480	272.61	0.0106
	178 → 184	-0.25295			
	178 → 186	0.12321			
	179 → 187	0.32911			
	180 → 188	0.48808			

Calculations for structure B

Table S12: Through DFT obtained zero-point energy (E), enthalpy (H) and Gibbs free energy (G) of structure B in kJ/mol

E H G -2584.99 -2584.94 -2585.06

Table S13: Through DFT obtained geometry of structure B					
Center	Atomic	Coordinates (Angstrom	s)		
Number	Number	X	Y	Z	
1	6	2.90052	1.767532	1.116753	
2	6	4.24766	1.42724	1.284403	
3	6	2.417965	2.925823	1.740723	
4	6	5.085065	2.214429	2.074761	
5	1	4.655978	0.553943	0.790289	
6	6	3.250773	3.705973	2.538793	
7	1	-3.373393	3.162858	-0.948103	
8	6	4.587983	3.350401	2.710071	
9	1	6.129229	1.939778	2.188198	
10	1	2.859506	4.601268	3.01161	
11	1	5.241664	3.963225	3.322752	
12	15	1.700506	0.791221	0.091911	
13	6	2.786816	-0.177871	-1.044328	
14	6	2.894641	0.243728	-2.375258	
15	6	3.530777	-1.287331	-0.621488	

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
16	6	3.745154	-0.419017	-3.258559	
17	1	2.309096	1.090507	-2.714152	
18	6	4.37877	-1.949204	-1.506185	
19	1	3.441758	-1.644412	0.399094	
20	6	4.49096	-1.513467	-2.825838	
21	1	3.819832	-0.080557	-4.287174	
22	1	4.945558	-2.810459	-1.16666	
23	1	5.151149	-2.030616	-3.515116	
24	15	-1.737302	0.845411	-0.497125	
25	6	-2.221132	0.677611	1.283973	
26	6	-1.734664	1.633536	2.181621	
27	6	-3.159964	-0.258332	1.736636	
28	6	-2.169626	1.650965	3.506825	
29	1	-1.021068	2.37344	1.834556	
30	6	-3.58835	-0.246606	3.060029	
31	1	-3.566897	-0.997092	1.055623	
32	6	-3.096297	0.710623	3.948375	
33	1	-1.785008	2.401715	4.190049	
34	1	-4.310497	-0.982941	3.397991	
35	1	-3.438578	0.723564	4.978455	
36	6	-3.441966	1.024832	-1.210358	
37	6	-4.252623	-0.050227	-1.600357	
38	6	-3.980608	2.317481	-1.247332	
39	6	-5.561939	0.16471	-2.02583	
40	1	-3.866256	-1.062804	-1.580017	
41	6	-5.292686	2.530613	-1.666205	
42	1	1.390294	3.231513	1.574467	
43	6	-6.086434	1.455888	-2.060075	
44	1	-6.173485	-0.680148	-2.327625	
45	1	-5.690037	3.54036	-1.690036	
46	1	-7.106472	1.621982	-2.391859	
47	6	1.059871	-0.483897	1.304742	
48	6	0.123844	-1.450768	0.932653	
49	6	1.454182	-0.390665	2.667947	
50	6	-0.437588	-2.3209	1.927879	

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
51	6	0.938966	-1.223952	3.625675	
52	1	2.182066	0.354332	2.960307	
53	6	-0.023361	-2.203976	3.291338	
54	1	1.265696	-1.132352	4.657657	
55	6	-0.279406	-1.65145	-0.501363	
56	6	-1.131677	-0.775988	-1.167894	
57	6	0.249736	-2.797403	-1.198729	
58	6	-1.389023	-0.973288	-2.557387	
59	6	-0.072601	-3.002371	-2.576672	
60	6	-0.884918	-2.047741	-3.235232	
61	1	-1.995861	-0.252755	-3.091976	
62	1	-1.103812	-2.176237	-4.29137	
63	6	-0.584498	-3.062735	4.272507	
64	1	-0.25597	-2.959944	5.302728	
65	6	-1.417985	-3.303909	1.615521	
66	1	-1.752433	-3.410768	0.591193	
67	6	-1.946624	-4.119131	2.587666	
68	1	-2.692898	-4.860957	2.32094	
69	6	-1.525722	-4.002578	3.932311	
70	1	-1.948327	-4.654821	4.689965	
71	6	1.08937	-3.758094	-0.570338	
72	1	1.360072	-3.628529	0.469228	
73	6	0.432048	-4.139651	-3.257602	
74	1	0.174991	-4.27495	-4.304261	
75	6	1.227159	-5.05455	-2.611593	
76	1	1.604131	-5.924297	-3.14016	
77	6	1.557842	-4.855882	-1.253385	
78	1	2.190894	-5.575421	-0.743562	
79	46	0.130737	2.313882	-1.050692	
80	6	-0.98274	3.716124	-2.14087	
81	1	-0.357033	4.296763	-2.817473	
82	1	-1.759749	3.211116	-2.719629	
83	1	-1.453771	4.4026	-1.428821	
84	6	1.725066	3.554173	-1.644322	
85	1	1.794419	3.562361	-2.734965	

Center	Atomic	Coordinates (Angstroms)				
Number	Number	X	Y	Z		
86	1	1.510516	4.571241	-1.307747		
87	1	2.686318	3.245256	-1.228369		

Table S14: Calculated excited states of structure B, their crossings, rotatory strengths, energies in eV and nm, and their oscillator strength						
Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f	
1	181 → 182	0.69589	2.797	443.28	0.0047	
2	181 → 183	0.69685	3.0474	406.85	0.0012	
3	179 → 182	-0.23818	3.438	360.63	0.0105	
	180 → 182	0.64914				
4	181 → 184	0.68646	3.4531	359.05	0.0008	
5	179 → 182	0.29924	3.5293	351.3	0.0027	
	181 → 185	0.42322				
	181 → 186	0.45688				
6	179 → 182	-0.45411	3.5516	349.1	0.0177	
	180 → 182	-0.18169				
	$180 \rightarrow 183$	-0.10290				
	$181 \rightarrow 185$ $181 \rightarrow 186$	-0.12496				
	101 / 100	0.40051				
7	179 → 182	-0.28818	3.5749	346.82	0.0233	
	180 → 182	-0.13474				
	$180 \rightarrow 183$	-0.13539				
	$181 \rightarrow 184$ $181 \rightarrow 185$	0.12675				
	$181 \rightarrow 185$ $181 \rightarrow 186$	-0.24269				
8	176 → 182	0.22846	3.7214	333.17	0.0422	
	$178 \rightarrow 182$	0.10984				
	$1/9 \rightarrow 182$ $180 \rightarrow 183$	-0.14518				
	$180 \rightarrow 183$ $181 \rightarrow 187$	-0.10534				
9	177 → 182	0.11816	3.7564	330.06	0.009	
	$178 \rightarrow 182$	-0.17108				
	$179 \rightarrow 183$ $180 \rightarrow 183$	0.64439				
	100 / 105	0.10020				
10	$177 \rightarrow 182$	0.47791	3.8115	325.29	0.0013	
	$177 \rightarrow 183$	-0.10294				
	$178 \rightarrow 182$ $179 \rightarrow 182$	-0.20288				
	$179 \rightarrow 183$	-0.15052				
	180 → 183	-0.10020				
	181 → 187	-0.26874				
	181 → 188	-0.21735				

Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
11	$176 \rightarrow 182$ $177 \rightarrow 182$ $178 \rightarrow 182$ $181 \rightarrow 188$	-0.20448 0.23790 0.54082 -0.23172	3.819	324.65	0.0041
12	$176 \rightarrow 182$ $178 \rightarrow 182$ $181 \rightarrow 187$ $181 \rightarrow 188$	0.13178 -0.19310 0.54183 -0.35083	3.8244	324.2	0.0069
13	$175 \rightarrow 182$ $177 \rightarrow 182$ $181 \rightarrow 187$ $181 \rightarrow 188$ $181 \rightarrow 189$	-0.16438 0.37444 0.28150 0.43785 0.11467	3.8456	322.41	0.0038
14	$175 \rightarrow 182$ $176 \rightarrow 182$ $178 \rightarrow 182$ $180 \rightarrow 183$ $181 \rightarrow 189$	0.33018 0.50939 0.15238 -0.23456 0.10419	3.9426	314.48	0.0157
15	$175 \rightarrow 182$ $176 \rightarrow 182$ $181 \rightarrow 188$ $181 \rightarrow 189$	0.17527 -0.19611 -0.14121 0.60253	3.9729	312.07	0.0035
16	$\begin{array}{c} 175 \rightarrow 182 \\ 175 \rightarrow 183 \\ 176 \rightarrow 182 \\ 178 \rightarrow 182 \\ 179 \rightarrow 183 \\ 181 \rightarrow 188 \\ 181 \rightarrow 189 \\ 181 \rightarrow 190 \end{array}$	0.46709 -0.10954 -0.23153 -0.16011 -0.12117 0.15268 -0.22401 -0.18452	3.9908	310.67	0.0187
17	$175 \rightarrow 182$ $181 \rightarrow 188$ $181 \rightarrow 189$ $181 \rightarrow 190$	0.11615 -0.10032 -0.18238 0.61959	4.0618	305.24	0.0111
18	$176 \rightarrow 183$ $177 \rightarrow 183$ $178 \rightarrow 182$ $178 \rightarrow 183$ $180 \rightarrow 185$	-0.16066 -0.19518 0.10354 0.58336 0.15207	4.0949	302.78	0.0023
19	$177 \rightarrow 183$ $178 \rightarrow 183$ $180 \rightarrow 184$ $180 \rightarrow 185$	0.47249 0.25516 -0.33232 -0.19394	4.1002	302.39	0.0027

Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
20	$176 \rightarrow 183$ $178 \rightarrow 183$ $180 \rightarrow 184$ $180 \rightarrow 185$ $180 \rightarrow 187$	0.33291 0.21537 0.43693 -0.30357 -0.10273	4.1177	301.1	0.0139
21	$175 \rightarrow 183$ $176 \rightarrow 183$ $177 \rightarrow 183$ $180 \rightarrow 184$ $180 \rightarrow 185$	-0.11278 -0.30516 0.42197 0.38595 0.14614	4.12	300.93	0.0061
22	$181 \rightarrow 191$	0.67244	4.1302	300.19	0.0006
23	$172 \rightarrow 182$ $175 \rightarrow 183$ $176 \rightarrow 183$ $177 \rightarrow 183$ $179 \rightarrow 184$ $179 \rightarrow 185$ $180 \rightarrow 185$	0.13714 0.41145 -0.27547 -0.13041 0.25826 0.19213 -0.12319	4.1529	298.54	0.0224
24	$176 \rightarrow 183$ $181 \rightarrow 190$ $181 \rightarrow 191$ $181 \rightarrow 192$ $181 \rightarrow 193$	0.11524 -0.15320 -0.12003 0.53580 0.30831	4.1868	296.13	0.0025
25	$174 \rightarrow 182$ $175 \rightarrow 182$ $175 \rightarrow 183$ $176 \rightarrow 183$ $179 \rightarrow 184$ $181 \rightarrow 192$	0.13582 -0.14835 -0.22217 0.12954 0.56834 -0.13129	4.2302	293.09	0.0396
26	$174 \rightarrow 182$ $174 \rightarrow 183$ $175 \rightarrow 183$	0.62394 -0.11208 0.23233	4.2398	292.43	0.008
27	$172 \rightarrow 182$ $174 \rightarrow 182$ $175 \rightarrow 183$ $176 \rightarrow 183$ $179 \rightarrow 185$ $179 \rightarrow 186$ $180 \rightarrow 185$	-0.16528 -0.14606 0.21480 0.11740 -0.23059 0.48784 0.14924	4.2824	289.52	0.0055
28	$172 \rightarrow 182$ $175 \rightarrow 183$ $179 \rightarrow 184$ $179 \rightarrow 185$ $179 \rightarrow 186$	0.14270 -0.21305 -0.13844 0.42743 0.40686	4.2891	289.07	0.0278

Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
29	$175 \rightarrow 183$ $176 \rightarrow 183$ $179 \rightarrow 185$ $179 \rightarrow 186$ $180 \rightarrow 185$ $181 \rightarrow 192$ $181 \rightarrow 194$	0.17750 0.23640 0.10833 -0.20823 0.37771 -0.12095 0.30968	4.2985	288.44	0.059
30	$176 \rightarrow 183$ $179 \rightarrow 185$ $179 \rightarrow 186$ $180 \rightarrow 185$ $181 \rightarrow 194$	-0.13536 -0.10915 0.10942 -0.19782 0.61055	4.3092	287.72	0.0218
31	$180 \rightarrow 185$ $180 \rightarrow 186$ $180 \rightarrow 187$ $181 \rightarrow 192$ $181 \rightarrow 195$ $181 \rightarrow 198$ $181 \rightarrow 203$	0.19025 0.53456 -0.13808 0.12143 0.11496 0.13021 -0.11856	4.3203	286.98	0.0124
32	$\begin{array}{c} 179 \rightarrow 185 \\ 180 \rightarrow 185 \\ 180 \rightarrow 186 \\ 180 \rightarrow 187 \\ 181 \rightarrow 192 \\ 181 \rightarrow 194 \\ 181 \rightarrow 195 \\ 181 \rightarrow 196 \\ 181 \rightarrow 198 \\ 181 \rightarrow 201 \\ 181 \rightarrow 203 \\ 181 \rightarrow 205 \end{array}$	-0.10021 -0.11575 0.39821 0.13168 -0.15876 -0.11443 -0.20539 0.12084 -0.20294 -0.14753 0.18010 0.10439	4.3359	285.95	0.0064
33	$172 \rightarrow 182$ $173 \rightarrow 182$ $175 \rightarrow 184$ $177 \rightarrow 184$ $179 \rightarrow 184$ $179 \rightarrow 185$ $179 \rightarrow 187$	0.19071 0.44281 -0.11647 -0.11557 -0.11885 -0.28610 -0.12830	4.3946	282.13	0.0188
34	$173 \rightarrow 182$ $181 \rightarrow 192$ $181 \rightarrow 193$ $181 \rightarrow 196$ $181 \rightarrow 197$	0.10222 -0.30463 0.56601 -0.13314 0.15769	4.411	281.08	0.0019

Excited State	Crossing	Rotary strength	Energy [eV]	Wavelength [nm]	Oscillator strength f
35	$172 \rightarrow 182$ $173 \rightarrow 182$ $178 \rightarrow 184$ $179 \rightarrow 185$ $179 \rightarrow 187$	-0.25878 0.47961 -0.21126 0.19002 0.14281	4.4544	278.34	0.0109
36	$171 \rightarrow 182$ $173 \rightarrow 182$ $176 \rightarrow 183$ $176 \rightarrow 185$ $177 \rightarrow 184$ $178 \rightarrow 184$ $180 \rightarrow 187$ $181 \rightarrow 195$	-0.14989 -0.16713 0.10088 0.10605 -0.18581 -0.30963 0.33983 0.12210	4.4643	277.72	0.0294
37	$172 \rightarrow 182$ $176 \rightarrow 184$ $177 \rightarrow 184$ $178 \rightarrow 184$ $180 \rightarrow 187$ $181 \rightarrow 195$	-0.13499 -0.17858 0.24794 0.44039 0.23057 0.15151	4.4879	276.27	0.0141
38	$178 \rightarrow 184$ $181 \rightarrow 193$ $181 \rightarrow 195$ $181 \rightarrow 196$	-0.10631 0.10395 0.31472 0.54491	4.5079	275.04	0.001
39	$175 \rightarrow 184$ $176 \rightarrow 184$ $177 \rightarrow 184$ $178 \rightarrow 184$ $179 \rightarrow 187$	-0.15446 0.11688 0.53654 -0.23787 -0.10221	4.5166	274.51	0.0001
40	$174 \rightarrow 182$ $174 \rightarrow 183$ $179 \rightarrow 187$	0.13035 0.63671 -0.16811	4.5535	272.28	0.0059

References

- [1] Y. Kiso, K. Yamamoto, K. Tamao, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4373.
- [2] S. Yamamoto, H. Matsui, T. Okajima, S. Karuppuchamy, M. Yoshihara, *Solid State Commun.* **2008**, *148*, 274.
- [3] APEX suite of crystallographic software, APEX 2, Version 2008.4, and APEX 3, Version 20019-1.0, Bruker AXS Inc., Madison, Wisconsin, USA, **2009/2009**.
- [4] SAINT, Version 8.40A, and SADABS, Version 2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 206/2019.
- [5] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3.

- [6] a) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3; b) C. B.
 Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.
- [7] E. Prince, H. Fuess, T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, A. Authier, V. Kopský, D. B. Litvin, M. G. Rossmann et al., *International tables for crystallography*, Springer Netherlands, Amsterdam, **2006**.
- [8] A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148.
- [9] H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, 39, 876.
- [10] S. Parsons, H. D. Flack, T. Wagner, *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.* **2013**, *69*, 249.
- [11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., *Gaussian* 16 Rev. C.01, Wallingford, CT, 2016.
- [12] F. Santoro, F. Mortaheb, J. Lepelmeier, U. Boesl, U. Heiz, A. Kartouzian, *ChemPhysChem* **2018**, *19*, 715.