Supporting Information

A study on optical properties for various hot drug molecules

by 2020

Chun Zhang^{a,#}, Yv-Ting Yang^{a#}, Xue Yan^a, Yi-Tao Sun^a, An-Dong Shao^a, Si-Nuo Gao^a, Yu-Bo Zhou^{b,c}, Ai-Min Ren^{d*}, Jia Li^{b,c*}, Wen-Long Wang^{a*}

^aSchool of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China. E-mail: <u>wwenlong2011@163.com</u>(W-L. W.)

^bNational Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. E-mail: <u>jli@simm.ac.cn</u>

^cZhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong528400

^dInstitute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2#, Changchun 130061, P.R. China. E-mail: <u>renam@jlu.edu.cn</u>

Table of Contents

Table S1. The stable geometries of 39 drug molecules among top 200 pharmaceuticals by retails in 2020.

Figure S1. The electrostatic surface potential for 18 and 134 compounds based on the stable ground state geometries.

Table S2. The calculated fluorescent spectra of all the studied 39 molecules.

Figure S2. The UV-vis spectra of (A) molecule **18** and (B) **134** with the concentration of 100 μ M in different solvent (100%DMSO, 50%DMSO and 10%DMSO).

Table S3. Calculated ground state transient dipole moment ($^{\mu_{00}}$) of **18** and **134** compounds with DMSO and H₂O solvent model.

Figure S3. The emission spectra of compound **18** (A) and **134** (B) with different concentration in 10%DMSO-90%PBS solvent.

Table S4. The calculated energies of HOMO, LUMO and HOMO-LUMO gap for molecule **134**, **134-E** and **134-RETCI**.

Figure S4. The UV-vis (A) and emission spectra (by excited at 370 nm, B) of compound **18** using 10%DMSO-90%H₂O and 10%DMSO-90%PBS solvent from experiments.

Figure S5. The emission spectra of compound **134** by excitation at 405 nm (black) and 488 nm (red) wavelength in 10%DMSO-90%PBS solvent.

Figure S6. Confocal microscopy colocalization images of compound 134 with 10 μ M in HeLa cells.

Table S5. Calculated TPA properties including the maximum TPA cross-section (δ_{max}^{TPA}),

corresponding TPA wavelength (λ_{max}^{TPA}), and transition nature of **18** and **134** in gas (a) and water (b) by B3LYP functional.

Table S1. The stable geometries of 39 drug molecules among top 200 pharmaceuticals by retails in 2020.

Figure S1. The electrostatic surface potential for **18** and **134** compounds based on the stable ground state geometries.

Table S2. The calculated fluorescent sp	pectra of all the studied 39 molecules
---	--

Molecules	$\lambda^{\rm EMI}/nm$	Oscillator Strength	Transition natures
3	471.6ª	0.3880 ª	$S_1 \rightarrow S_0^{a}$
5	397.3 ª	0.5432 a	$S_1 \rightarrow S_0^{a}$
18	690.1 ^a	0.6147 ^a	$S_1 \rightarrow S_0^{a}$
21	469.4 ^a	0.0208 a	$S_1 \rightarrow S_0^{a}$
21	497.7 ^ь	0.0034 ^b	$S_1 \rightarrow S_0^{b}$

24	809 4 ^a	0.0257 a	$S_1 \rightarrow S_0^a$
58	339.2 ^a	0.4459 ª	$S_1 \rightarrow S_0^a$
62	654.6 ^a	0.0077 ^a	$S_1 \rightarrow S_0^a$
64	604.6 ^a	0.0793 a	$S_1 \rightarrow S_0^a$
67	521.5ª	0.0031 a	$S_1 \rightarrow S_0^{a}$
	480 9 a	0.0249 a	$S_1 \rightarrow S_0^{a}$
80	355.2 ^b	0.0219	$S_1 \rightarrow S_0^{b}$
87	511.6ª	0.0016ª	$S_1 \rightarrow S_0^{a}$
04	288 0 a	0.0010	S S a
94	388.0 ª	0.7707*	$S_1 \rightarrow S_0^{-1}$
90	769.2°	0.01774	$S_1 \rightarrow S_0$ "
100	347.9ª	0.00/1 *	$S_1 \rightarrow S_0^{a}$
104	542.8 ª	0.4810 ^a	$S_1 \rightarrow S_0^{a}$
115	573.5 ^a	0.1361 ^a	$S_1 \rightarrow S_0^{a}$
120	483.0 ^a	0.0001 ^a	$S_1 \rightarrow S_0^{a}$
121	433.2 ª	0.0011 a	$S_1 \rightarrow S_0^{a}$
126	388.3 ^a	0.5630 a	$S_1 \rightarrow S_0^{a}$
128	569.2 ª	0.0057 ^a	$S_1 \rightarrow S_0^{a}$
131	456.7 ^a	0.7472 ^a	$S_1 \rightarrow S_0^{a}$
132	497.3 ^a	0.0092 a	$S_1 \rightarrow S_0^{a}$
133	386.4 ª	0.2869 ª	$S_1 \rightarrow S_0^{a}$
134	408.5 ^a	1.4772 ^a	$S_1 \rightarrow S_0^{a}$
136	428.2 ^a	0.3776 ^a	$S_1 \rightarrow S_0^{a}$
141	677.0 ^a	0.0001 ^a	$S_1 \rightarrow S_0^{a}$
149	567.0 ª	0.2323 ^a	$S_1 \rightarrow S_0^{a}$
164	435.4 ^a	1.3784 ^a	$S_1 \rightarrow S_0^{a}$
165	454.2 ^a	0.4902 ^a	$S_1 \rightarrow S_0^{a}$
171	585.9 ª	0.0010 a	$S_1 \rightarrow S_0^{a}$
180	543.9 ^a	0.6580 ^a	$S_1 \rightarrow S_0^{a}$
187	449.2 ^a	1.2937 ^a	$S_1 \rightarrow S_0^{a}$
191	512.5 ^a	0.0042 ^a	$S_1 \rightarrow S_0^{a}$
193	673.5 ^a	0.0001 ^a	$S_1 \rightarrow S_0^{a}$
194	497.7 ª	0.0021 a	$S_1 \rightarrow S_0^{a}$
196	484.3 ^a	0.0012 a	$S_1 \rightarrow S_0^{a}$
	514.6 ª	0.0269 a	$S_1 \rightarrow S_0^a$
197	496.7 ^ь	0.0041 ^b	$S_1 \rightarrow S_0^{b}$
	466.4 ^a	0.0162 ª	$S_1 \rightarrow S_0^a$
199	487.4 ^b	0.0142 ^b	$S_1 \rightarrow S_0^{b}$
200	456.5 ^a	0.0506 ª	$S_1 \rightarrow S_0^{a}$

a: the results were from the level of TD-DFT//B3LYP/6-31+G(d)/SMD(H₂O). b: the results were from the level of TD-DFT//M06-2X/6-31+G(d)/SMD(H₂O).

Figure S2. The UV-vis spectra of (A) molecule **18** and (B) **134** with the concentration of 100 μ M in different solvent (100%DMSO, 50%DMSO and 10%DMSO).

Table S3. Calculated ground state transient dipole moment ($^{\mu_{00}}$) of **18** and **134** compounds with DMSO and H₂O solvent model.

Figure S3. The emission spectra of compound **18** (A) and **134** (B) with different concentration in 10%DMSO-90%PBS solvent.

Table S4. The calculated energies	of HOMO, LUMO	and HOMO-LUMO	gap for molecules 134	ŀ,
134-E and 134-RETCI .				

Molecules	HOMO/eV	LUMO/eV	HOMO-LUMO gap /eV
	-6.97	-2.65	4.32
134			
	-6.64	-2.90	3.74
134-E			

Figure S4. The UV-vis (A) and emission spectra (by excited at 370 nm, B) of compound **18** using 10%DMSO-90%H₂O and 10%DMSO-90%PBS solvent from experiments.

Figure S5. The emission spectra of compound **134** by excitation at 405 nm (black) and 488 nm (red) wavelength in 10%DMSO-90%PBS solvent.

Figure S6. Confocal microscopy colocalization images of compound 134 with 10 μ M in HeLa cells.

by B3LYP functional. Molecules Transition nature $\lambda_{max/nm}^{TPA}$ $\delta_{max/GM}^{TPA}$ 18 319^a $S_0 \rightarrow S_1^a$ 815.7^a $S_0 \rightarrow S_1^b$ 879.4^b 989^b $S_0 \rightarrow S_1^a$ 134 618.4ª 3ª $S_0 \rightarrow S_1^b$ 4^b 661.2^b

Table S5. Calculated TPA properties including the maximum TPA cross-section (δ_{max}^{TPA}), corresponding TPA wavelength (λ_{max}^{TPA}), and transition nature of **18** and **134** in gas (a) and water (b)