Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Selective hydrogenolysis of agricultural straw-based cellulose to propylene glycol and acetol over acidic WO_x/ZrO₂

Zhicheng Luo^[a], Zhiguo Zhu^[b], Lupeng Han^[c], Rui Xiao^{[a]*}, Dawang Chu^{[d]*}

^[a] Dr. Z. Luo, Dr. R. Xiao
MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096 (China)
E-mail address: ruixiao@seu.edu.cn
^[b] Dr. Z. Zhu
College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China)
^[c] Dr. L. Han
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444 (China)
^[d] Dr. D. Chu*
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 20062 (China)
E-mail address: David_Chu@163.com

Characterization

X-ray diffraction (XRD) patterns were tested by Rigaku Ultima IV X-ray diffractometer equipped with Cu K α radiation operating at 35 kV and 25 mA (λ = 1.5405 Å) scanning from 5° to 90° at a speed of 30° min⁻¹.

The temperature-programmed reduction (H₂-TPR) analysis of WO₃/ZrO₂ catalysts were performed by Micromeritics tp5080 apparatus using a 5%H₂/He mixture (flowing rate: 30 mL·min⁻¹) and a heating rate of 10 K·min⁻¹ with a thermal conductor detector (TCD).

Nitrogen sorption isotherms were collected on a BELSORP-MAX instrument, and reduced samples were kept on 77 K after degassing for 10 h under vacuum at 573 K. The special surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. Surface density (SD, W/nm²)=Concentration of W (g_W/g_{Cat})×Avagodro number (1/(mol W))/BET area (m²/g Cat.)×Atomic weight of W (g_W/mol_W)×10¹⁸ (nm²/m²)

The transmission electron microscopy (TEM) was measured on the FEI Tecnai G2 F30 microscope (operating at 300 kV).

X-ray photoelectron spectroscopy (XPS) were tested by a Thermo Scientific K-Alpha spectrometer equipped with Al K α (h ν = 1486.6 eV) radiation.

In CO₂/NH₃-TPD measurement, the samples were purged under He flow for 60 min at 723 K. The sample was cooled down to 393 K to be ready for adsorption. After adsorption saturation with purging CO₂/NH₃, the samples were heated from 393 K to 1073 K in He flow at a temperature rate of 10 K/min, and the desorbed NH₃ was monitored by a TCD detector.

Figure S1. TEM image of WO_x/ZrO₂(600).

Figure S2. H₂-TPR profile of the WO₃/ZrO₂ sample.

Figure S3. Raman spectra of different WO_x/ZrO₂(T) catalysts.

Figure S4. Recycling results of the $WO_x/ZrO_2(600)$ catalyst for cellulose hydrogenolysis. Reaction conditions: cellulose, 1.0 g; $20\%WO_x/ZrO_2(600)$, 0.2 g; 1%Ru/AC catalyst, 0.2 g; H₂O, 100 mL; H₂, 4 MPa; 800 rpm; 240 °C; 2 h.

Figure S5. (a) xrd (b) xps spectra of $WO_x/ZrO_2(600)$ catalyst before and after reaction.

Figure S6. The mechanism of cellulose hydrogenolysis to acetol and 1,2-PG.

Catalyst	Conv.	Selectivity (C %)						Carbon balance
Calaryst	(C %)	EG	Acetol	1,2-PG	1-HB	Sorbitol	Other	(%)
WO _x /ZrO ₂ (400)+	97.1	47.4	7.5	7.7	4.1	12.8	8.2	85.7
Ru/AC								
$WO_{x}/ZrO_{2}(500)+$	98.5	45 1	10.1	14.2	85	56	22	85 7
Ru/AC		10.1	10.1	1 1.2	0.5	5.0	2.2	00.1
WO _x /ZrO ₂ (600)+	100.0	26.0	25.8	21.9	129	22	62	89.9
Ru/AC		20.0	23.0	21.9	12.9	2.2	0.2	0).)
WO _x /ZrO ₂ (700)+	100.0	48.8	8.0	12.8	65	32	2.0	82 3
Ru/AC		10.0	0.0	12.0	0.5	5.2	2.0	02.5
WO _x /ZrO ₂ (800)+	100.0	58.7	3.0	15.1	1.2	2.3	0.8	82.1
Ru/AC		2317	2.10	10.1			0.0	02.11

Table S1. The evaluation of different catalysts for the retro-aldol condensation of cellulose.

Reaction conditions: cellulose, 1.0 g; $30\%WO_x/ZrO_2(T)$, 0.2 g; 1%Ru/AC catalyst, 0.2 g; H_2O , 100 mL; H_2 , 4 MPa; 800 rpm; 240 °C; 2 h.

Catalyst	Conv. (C	Selectivity (C %)						Carbon balance
Cuturyst	%) -	EG	Acetol	1,2-PG	1-HB	Sorbitol	Others	(%)
$WO_x/ZrO_2(600)$	88.1	1.2	0	2.1	0	9.1	8.3	20.7
$\frac{WO_x/ZrO_2(600)}{+ 0.5\% Ru/AC}$	99.0	16.5	19.3	8.2	4.9	3.5	8.1	60.5
WO _x /ZrO ₂ (600) + 1.0%Ru/AC	100.0	26.0	25.8	21.9	12.9	2.2	6.2	89.9
WO _x /ZrO ₂ (600) + 1.5%Ru/AC	100.0	19.3	13.4	16.7	9.3	4.1	10.3	73.1
1%Ru/AC	55.2	15.2	0.1	4.3	0.5	28.3	2.2	50.6

Table S2. The evaluation of different catalysts for the retro-aldol condensation of cellulose.

Reaction conditions: cellulose, 1.0 g; 30%WO_x/ZrO₂(600), 0.2 g; 1%Ru/AC catalyst, 0.2 g; H₂O, 100 mL; H₂, 4 MPa; 800 rpm; 240 °C; 2 h.

Catalyst	Ru loading (wt %)	W loading (wt %)		
Fresh	1.0	30.3		
After 4 runs	1.0	26.9		

Table S3. ICP analysis of metal content of $30\%WO_x/ZrO_2(600) + 1\%Ru/AC$ catalyst before and after reaction.

Reaction conditions: cellulose, 1.0 g; 30%WO_x/ZrO₂(600), 0.2 g; 1%Ru/AC catalyst, 0.2 g; H₂O, 100 mL; H₂, 4 MPa; 800 rpm; 240 °C; 2 h.

Catalyst	Conv (C %)	Selectivity (C %)		
Catalyst	Conv. (C 70)	Fructose	Others	
WO _x /ZrO ₂ (400)+Ru/AC	24.3	66.1	9.9	
WO _x /ZrO ₂ (500)+Ru/AC	24.7	64.5	10.9	
WO _x /ZrO ₂ (600)+Ru/AC	26.8	75.5	13.1	
WO _x /ZrO ₂ (700)+Ru/AC	18.1	73.8	6.1	
$WO_x/ZrO_2(800)+Ru/AC$	14.6	55.9	11.8	

Table S4. Catalytic conversion of glucose catalyzed by $WO_x/ZrO_2(T)$ catalysts.