Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Development of intense yellow color BiVO₄/ZrO₂ composite coating for anticorrosive multifunctional cool roof

A. H. Riyas,¹ C.V. Geethanjali,¹ Liya Johnson,¹ Liju Elias,¹ A.M.A. Henaish,² Aslam Hossain,³ S. M. A. Shibli^{1,4*}

¹Department of Chemistry, University of Kerala, Karyavattom campus, Thiruvananthapuram, Kerala – 695 581, India

²NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia.

³Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090,

Rostov-on-Don, Russia

⁴Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India

*Corresponding Author: S.M.A. Shibli Ph: +91 8547067230, E. mail: smashibli@yahoo.com

Fig. S1. The trend of potential-time curves obtained during the zinc phosphating process of galvanized steel in the presence and absence of BVZ composites

Fig. S2. (A) EDS spectrum and EDS elemental mapping spectrum of zinc phosphate coating developed from the bath in the absence of BVZ composite; (B) EDS layered image, (C) O K, (D) P K and (E) Zn K

Fig. S3. (A) EDS spectrum and EDS elemental mapping spectra of zinc phosphate coating developed from the bath containing 0.05 wt.% of BVZ composite; (B) EDS layered image, (C) O K, (D) P K, (E) Zr L, (F) V K, (G) Bi M and (H) Zn K

Fig. S4. (A) EDS spectrum and EDS elemental mapping spectra of zinc phosphate coating developed from the bath containing 0.1 wt.% of BVZ composite; (B) EDS layered image, (C) O K, (D) P K, (E) Zr L, (F) V K, (G) Bi M and (F) Zn K

Fig. S5. (A) EDS spectrum and EDS elemental mapping spectra of zinc phosphate coating developed from the bath containing 0.2 wt.% of BVZ composite; (B) EDS layered image, (C) O K, (D) P K, (E) Zr L, (F) V K, (G) Bi M and (F) Zn K

Fig. S6. (A) EDS spectrum and EDS elemental mapping spectra of zinc phosphate coating developed from the bath containing 0.5 wt.% of BVZ composite; (B) EDS layered image, (C) O K, (D) P K, (E) Zr L, (F) V K, (G) Bi M and (F) Zn K

Fig. S7. XPS survey spectrum of zinc phosphate coatings developed from the bath containing BVZ composite

Fig. S8. OSP 3D images of bare zinc phosphate coatings

Fig. S9. OSP 2D images of zinc phosphate coatings developed from the bath containing different compositions of BVZ composite: (A) 0 wt.%, (B) 0.05 wt.%, (C) 0.1 wt.%, (D) 0.2 wt.% and (E) 0.5 wt.%

Fig. S10. FLIR thermal image of bare zinc phosphate coatings with and without BVZ composite (Sp1 – Temperature of zinc phosphate coating with BVZ composite, Sp2 – Temperature of zinc phosphate coating without BVZ composite, and Sp3 – Temperature of hot plate region)

Fig. S11 equivalent circuit of of BVZ composite zinc phosphate coatings

Fig. S12. Nyquist plots of 0.2 wt.% BVZ coating after 0 min, 20 min, 3 h, 1 day and 3 days immersion in 3.5 wt.% NaCl solution.

Fig. S13 3D SKPM images of (A) 0 wt.%,

Fig. S14. 2D SKPM images of zinc phosphate coating developed from the bath containing different contents of BVZ composite; (A) 0 wt.%, (B) 0.05 wt.%, (C) 0.1 wt.%, (D) 0.2 wt.% and (E) 0.5 wt.%

Sl. No.	Chemicals	Composition
1	Phosphoric acid (H ₃ PO ₄)	16 mL/L
2	Zinc Oxide (ZnO)	1.2 g/L
3	Sodium Nitrite (NaNO ₂)	16 g/L
4	Sodium Fluride (NaF)	2 g/L

Table S2. Comparison of roughness parameters of bare zinc phosphate coating and zinc

 phosphate coatings developed from the containing different amounts of BVZ composite

Coatings	Sa	$\mathbf{S}_{\mathbf{q}}$	Sp	$\mathbf{S}_{\mathbf{v}}$	$\mathbf{S}_{\mathbf{t}}$	$\mathbf{S}_{\mathbf{sk}}$	S _{ku}
Coatings	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)
Bare ZP	2.879	3.558	16.271	-9.342	25.613	-1.450	3.028
ZP + 0.05 wt.% BVZ	2.795	3.440	10.354	-10.882	21.236	-2.795	2.792
ZP + 0.1 wt.% BVZ	2.527	3.089	9.893	-6.981	16.874	-4.856	2.982
ZP + 0.2 wt.% BVZ	1.593	1.996	5.878	-6.061	11.949	-5.896	3.445
ZP + 0.5 wt.% BVZ	2.122	2.640	8.077	-8.936	17.014	-3.328	3.177

5% Chemicals	NIR reflectance at 1100 nm (R%)	NIR solar reflectance (R*%)
NaCl	45.02	53.90
NaOH	42.18	51.45
HCl	39.25	49.45
HNO ₃	37.69	47.87

Table S3. Comparison of NIR reflectance and NIR solar reflectance of optimized BVZ

 composite incorporated zinc phosphate coating after exposure in different solutions

Table S4. Comparison of NIR reflectance and NIR solar reflectance of optimized BVZ

 composite incorporated zinc phosphate coating after exposure to the natural sunlight

Time duration exposure to sunlight (days)	NIR reflectance at 1100 nm (R%)	NIR solar reflectance (R*%)
0	51.92	58.97
10	51.71	58.77
20	51.60	58.55
30	51.49	58.42
40	51.29	58.27
50	51.22	58.17
60	51.16	58.07

SI. No.	coatings	Front coating temperature (°C)	Back coating temperature (°C)	Temperature difference (°C)
1	Bare ZP coating	62.4	56.1	6.3
2	BVZ zinc phosphate coating	52.6	40.8	11.8

Table S5. Temperature measurements in front and behind the coating surface

Table S6. Electrochemical impedance parameters: bare zinc phosphate coating and different compositions of BVZ composite-based zinc phosphate coating

Contings	R _s	Q _C	R _C	Q _{dl}	R _{ct}
Coatings	$(\Omega \text{ cm}^2)$	(F)	$(\Omega \text{ cm}^2)$	(F)	$(\Omega \ \mathrm{cm}^2)$
Bare ZP	11.60	26.31×10-6	50.53	0.565×10-3	137.7
ZP + 0.05 wt.% BVZ	11.23	9.85×10 ⁻⁶	47.35	1.555×10 ⁻³	175.3
ZP + 0.1 wt.% BVZ	14.02	20.45×10-6	74.7	1.712×10 ⁻³	341.6
ZP + 0.2 wt.% BVZ	22.16	3.09×10 ⁻⁶	188.2	5.814×10-6	765.4
ZP + 0.5 wt.% BVZ	12.72	6.519×10-6	141.6	1.608×10-3	647.4

Material	Reflectance	Corrosion resistance	Reference
LiMg _{0.8} Co _{0.2} PO ₄	67%	$Rct = 9.3 \times 109 \ \Omega cm_2$	[1]
NaZn _{0.9} Co _{0.1} PO ₄	64%	$Rct = 8.8 \times 106 \ \Omega cm^2$	[2]
Potassium titanate whiskers	48 %	Corrosion Rate = 7.531×10^{-4}	[3]
		mmpy	
	200/		E 43
Green pigments ($Co_x Zn_{1-x}O$)	30%	-	[4]
Bi _{1-x} La _x FeO ₃	44.1%	-	[5]
SrCaP	-	Corrosion Rate $= 2.79 \pm 0.03$	[6]
		mmpy	
BVZ composite	51.97%	Corrosion Rate = 1.099 mmpy	Present study

Table S7 Comparision of corrosion resistance and reflectance data with reported data

References

[1] P.K. Thejus, K.V. Krishnapriya, K.G. Nishanth, NIR reflective, anticorrosive magenta pigment for energy saving sustainable building coatings, Solar Energy, 222 (2021) 103-114.

[2] P.K. Thejus, K.V. Krishnapriya, K.G. Nishanth, A cost-effective intense blue colour inorganic pigment for multifunctional cool roof and anticorrosive coatings, Solar Energy Materials and Solar Cells, 219 (2021) 110778.

[3] W. Wang, Y. Tian, H. Shen, X. Zhang, Modified potassium titanate whiskers for preparation of enhanced corrosion-resistant phosphating conversion coatings with high NIR reflectivity on mild steel, Journal of Alloys and Compounds, 955 (2023) 170247.

[4] J.d.O. Primo, K.W. Borth, D.C. Peron, V.d.C. Teixeira, D. Galante, C. Bittencourt, F.J. Anaissi, Synthesis of green cool pigments (CoxZn1-xO) for application in NIR radiation reflectance, Journal of Alloys and Compounds, 780 (2019) 17-24.

[5] L. Yuan, A. Han, M. Ye, X. Chen, L. Yao, C. Ding, Synthesis and characterization of environmentally benign inorganic pigments with high NIR reflectance: Lanthanum-doped BiFeO3, Dyes and Pigments, 148 (2018) 137-146.

[6] J.G. Acheson, S. McKillop, J. Ward, A. Roy, Z. Xu, A.R. Boyd, P. Lemoine, P.N. Kumta, J. Sankar, B.J. Meenan, Effects of strontium-substitution in sputter deposited calcium phosphate coatings on the rate of corrosion of magnesium alloys, Surface and Coatings Technology, 421 (2021) 127446.