Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic supplementary information (ESI)

Di-ruthenium complexes of 1,4-diazabutadiene ligands: Synthesis, characterization and utilization as catalyst-precursor for oxidative coupling of amine to imine in air

Rumpa Saha, Aparajita Mukherjee and Samaresh Bhattacharya*

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700 032, India.

E-mail: samareshb.chemistry@jadavpuruniversity.in

Fig. S1 Crystal structure of the complex cation in 2.

Bond distances (Å)						
Ru1-N1	2.056(2)	Ru2-N3	2.029(3)			
Ru1-N2	2.021(2)	Ru2-N4	2.012(3)			
Ru1-P1	2.3011(9)	Ru2-P2	2.3140(9)			
Ru1-Cl1	2.4151(7)	Ru2-Cl1	2.4221(8)			
Ru1-Cl2	2.4773(8)	Ru2-Cl2	2.4756(8)			
Ru1-Cl3	2.4456(7)	Ru2-Cl3	2.4585(8)			
N1-C1	1.290(4)	N3-C17	1.303(5)			
N1-C3	1.435(4)	N3-C19	1.439(4)			
C1-C2	1.408(4)	C17-C18	1.409(5)			
N2-C2	1.300(4)	N4-C18	1.300(4)			
N2-C10	1.438(4)	N4-C26	1.437(4)			
	Bond a	angles (°)				
N1-Ru1-N2	78.11(10)	Ru1- Cl1- Ru2	84.12(2)			
N3-Ru2-N4	77.82(11)	Ru1- Cl2- Ru2	81.73(3)			
Ru1- Cl3- Ru2	82.72(2)					

Table S1 Selected bond distances and bond angles for complex 2

Fig. S2 Crystal structure of the complex cation in 4.

Bond distances (Å)							
Ru1-N1	2.041(9)	Ru2-N3	2.021(9)				
Ru1-N2	2.034(9)	Ru2-N4	2.045(9)				
Ru1-P1	2.312(3)	Ru2-P2	2.325(4)				
Ru1-Cl1	2.413(3)	Ru2-Cl1	2.429(3)				
Ru1-Cl2	2.448(3)	Ru2-Cl2	2.461(3)				
Ru1- Cl3	2.481(2)	Ru2-Cl3	2.492(3)				
N1-C1	1.302(15)	N3-C15	1.312(15)				
N1-C3	1.445(13)	N3-C17	1.449(13)				
C1-C2	1.402(14)	C15-C16	1.398(17)				
N2-C2	1.296(14)	N4-C16	1.288(14)				
N2-C9	1.444(12)	N4-C23	1.437(13)				
	Bond a	angles (°)					
N1-Ru1-N2	77.7(4)	Ru1- Cl1- Ru2	84.18(8)				
N3-Ru2-N4	77.7(4)	Ru1- Cl2- Ru2	82.78(8)				
Ru1- Cl3- Ru2	81.49(8)						

Table S2 Selected bond distances and bond angles for complex 4

Fig. S3 DFT-optimized structure of complex cation in 3.

Bond distances (Å)						
Ru1-N1	2.0578	Ru2-N3	2.0639			
Ru1-N2	2.0875	Ru2-N4	2.0747			
Ru1- P1	2.4079	Ru2-P2	2.4034			
Ru1- Cl1	2.5211	Ru2-Cl1	2.5285			
Ru1-Cl2	2.5137	Ru2-Cl2	2.5145			
Ru1- Cl3	2.5576	Ru2-Cl3	2.5526			
N1-C1	1.3106	N3-C15	1.3109			
N1-C3	1.4280	N3-C17	1.4269			
C1-C2	1.4269	C15-C16	1.4273			
N2-C2	1.3116	N4-C16	1.3091			
N2-C9	1.4286	N4-C23	1.4292			
	Bond a	angles (°)				
N1-Ru1-N2	78.25	Ru1- Cl1- Ru2	83.97			
N3-Ru2-N4	78.22	Ru1- Cl2- Ru2	84.41			
Ru1- Cl3- Ru2	82.75					

Table S3 Some computed bond distances and bond angles for the complex cation in 3

Fig. S4 Electronic absorption spectrum of complex 2 in dichloromethane solution.

Fig. S5 Electronic absorption spectrum of complex **3** (----) and its Gaussian components (--- and ---).

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λεχρ
State				strength	(nm)		(nm)
				(f)			
1	$H-5 \rightarrow L+1$	0.11000	2.3242	0.0564	533.44	MLCT/ILCT	548
	$H-3 \rightarrow L$	0.39293				MLCT/ILCT	
	$H-3 \rightarrow L+1$	0.12345				MLCT/ILCT	
	$H-2 \rightarrow L+1$	0.49334				MLCT/ILCT	
	$H \rightarrow L$	0.19366				MLCT/ILCT	
2	$H-6 \rightarrow L+1$	0.13693	2.5768	0.4669	481.15	ILCT/MLCT	493
	$H-4 \rightarrow L$	0.61592				ILCT/MLCT	
	$H-4 \rightarrow L+1$	0.11538				MLCT/ILCT	
	$H-2 \rightarrow L+1$	0.14221				MLCT/ILCT	
	$H \rightarrow L$	0.13757				MLCT/ILCT	
3	$H-9 \rightarrow L$	0.47180	3.1265	0.0127	396.55	MLCT/ILCT	406
	$H-9 \rightarrow L+1$	0.23324				MLCT/ILCT	
	$H-2 \rightarrow L+2$	0.17700				LLCT	
	$H-1 \rightarrow L+4$	0.15092				LLCT	
	$H \rightarrow L+5$	0.26872				LMCT	
4	$H-31 \rightarrow L$	0.14232	5.377	0.0750	230.58	ILCT/LLCT/MLCT	232
	$H-26 \rightarrow L+1$	0.17726				ILCT/LMCT	
	$H-25 \rightarrow L$	0.10217				ILCT/LLCT	
	$\text{H-25} \rightarrow \text{L+1}$	0.41700				ILCT/LLCT	
	$H-24 \rightarrow L$	0.27590				ILCT/LLCT/LMCT	
	$H-14 \rightarrow L+2$	0.12650				LMCT/ILCT/LLCT	
	$H-4 \rightarrow L+11$	0.10550				ILCT/MLCT	
	$H-1 \rightarrow L+12$	0.10760				ILCT/MLCT/LLCT	
	$H \rightarrow L+12$	0.12803				MLCT/ILCT/LLCT	
	H→L+13	0.16245				MLCT/ILCT/LLCT	

 Table S4 Computed parameters from TDDFT calculations on complex 1 for electronic spectral properties in dichloromethane solution

% Contribution		Fra	gments	
of fragments to	Ru	PMe ₃	L-OCH ₃	Cl
HOMO (H)	53	3	33	11
H-1	52	1	37	10
H-2	54	2	33	11
H-3	67	1	24	8
H-4	35	2	58	5
H-5	46	3	47	4
Н-6	36	2	58	4
H-9	36	3	53	8
H-14	5	6	33	56
H-24	5	1	84	10
H-25	16	11	42	31
H-26	2	1	92	5
H-31	20	21	43	16
LUMO (L)	14	1	83	2
L+1	14	1	83	2
L+2	58	7	24	11
L+4	52	22	16	10
L+5	62	2	26	10
L+11	4	2	93	1
L+12	6	32	62	0
L+13	13	2	85	0

 Table S5 Compositions of the molecular orbitals of complex 1

 associated with the electronic spectral transitions

Fig. S6 Contour plots of the molecular orbitals of complex 1, which are associated with the electronic spectral transitions (See Table S4).

Excited	Composition	CI value	E(eV)	Oscillator	λtheo	Assignment	λexp
State				strength	(nm)		(nm)
				(f)			
1	$H-3 \rightarrow L+1$	0.18735	2.2621	0.0612	548.09	MLCT/ILCT	544
	$H-2 \rightarrow L$	0.47769				MLCT/ILCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.42587				MLCT/LLCT	
	$\mathrm{H} \to \mathrm{L}$	0.20560				MLCT/ILCT/LLCT	
2	$H-4 \rightarrow L$	0.66239	2.6934	0.0536	460.33	MLCT/ILCT	486
	$\text{H-1} \rightarrow \text{L+1}$	0.15025				MLCT/LLCT	
3	$H-9 \rightarrow L$	0.50844	3.2731	0.0185	378.78	ILCT/LMCT	373
	$\text{H-8} \rightarrow \text{L+1}$	0.39464				ILCT/LLCT/LMCT	
	$\text{H-2} \rightarrow \text{L+4}$	0.11230				MLCT/ILCT	
	$\text{H-1} \rightarrow \text{L+3}$	0.15904				MLCT/LLCT	
4	$H-15 \rightarrow L+2$	0.13853	5.1850	0.1283	239.12	LMCT/LLCT/ILCT	232
	$H-12 \rightarrow L+2$	0.12656				LMCT/LLCT	
	$\text{H-10} \rightarrow \text{L+2}$	0.41806				LMCT/LLCT	
	$\text{H-9} \rightarrow \text{L+4}$	0.22004				LMCT/LLCT	
	$H-8 \rightarrow L+3$	0.29231				LMCT/LLCT	
	$\text{H-8} \rightarrow \text{L+5}$	0.13579				LMCT/LLCT	
	$H-3 \rightarrow L+9$	0.25740				MLCT/ILCT	

 Table S6 Computed parameters from TDDFT calculations on complex 2 for electronic spectral properties in dichloromethane solution

% Contribution		Fra	gments	
of fragments to	Ru	PMe ₃	L-CH ₃	C1
HOMO (H)	66	4	15	15
H-1	72	0	8	20
H-2	78	0	13	9
H-3	66	3	29	2
H-4	56	3	38	3
H-8	2	0	76	22
H-9	4	1	91	4
H-10	0	0	86	14
H-12	1	0	89	10
H-15	6	24	4	66
LUMO (L)	14	1	82	3
L+1	16	0	84	0
L+2	56	6	26	12
L+3	47	27	13	13
L+4	53	18	19	10
L+5	59	2	29	10
L+9	4	2	93	1

 Table S7 Compositions of the molecular orbitals of complex 2 associated with the electronic spectral transitions

Fig. S7 Contour plots of the molecular orbitals of complex 2, which are associated with the electronic spectral transitions (See Table S6).

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λexp
State				strength	(nm)		(nm)
				(f)			
1	$H-3 \rightarrow L+1$	0.56856	2.3302	0.0153	532.07	MLCT/ILCT	523
	$H-2 \rightarrow L$	0.25391				MLCT/ILCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.10614				MLCT/LLCT	
	$H \rightarrow L$	0.30764				MLCT/ILCT/LLCT	
2	$H-7 \rightarrow L$	0.33846	3.3654	0.0202	368.41	ILCT/MLCT	358
	$H-6 \rightarrow L+1$	0.25469				ILCT	
	$H-4 \rightarrow L+3$	0.11357				MLCT/LLCT	
	$H-2 \rightarrow L+2$	0.13737				MLCT/ILCT	
	$H-2 \rightarrow L+3$	0.25381				MLCT	
	$H-1 \rightarrow L+4$	0.39272				MLCT/LLCT	
	$H \rightarrow L+2$	0.10146				MLCT	
3	$H-17 \rightarrow L+3$	0.12378	5.5602	0.0706	222.98	LMCT	223
	$H-14 \rightarrow L+4$	0.13964				LMCT/LLCT	
	$H-6 \rightarrow L+4$	0.15586				LMCT/LLCT	
	$H-5 \rightarrow L+7$	0.11469				MLCT/LLCT/ILCT	
	$H-5 \rightarrow L+8$	0.50238				MLCT/LLCT/ILCT	
	$H-5 \rightarrow L+9$	0.16654				MLCT/LLCT/ILCT	
	$H-4 \rightarrow L+6$	0.10066				MLCT/ILCT	
	$H-4 \rightarrow L+11$	0.21133				MLCT/ILCT	

 Table S8 Computed parameters from TDDFT calculations on complex 3 for electronic spectral properties in dichloromethane solution

% Contribution		Fra	gments	
of fragments to	Ru	PMe ₃	L-H	Cl
HOMO (H)	68	4	12	16
H-1	73	0	7	20
H-2	79	1	12	8
H-3	73	4	22	1
H-4	70	4	23	3
H-5	63	4	20	13
H-6	15	3	80	2
H-7	18	0	78	4
H-14	10	20	5	65
H-17	11	32	12	45
LUMO (L)	14	1	82	3
L+1	17	0	82	1
L+2	56	4	28	12
L+3	48	27	12	13
L+4	53	19	18	10
L+6	2	0	98	0
L+7	2	0	98	0
L+8	4	2	93	1
L+9	6	3	90	1
L+11	3	0	97	0

 Table S9 Compositions of the molecular orbitals of complex 3 associated with the electronic spectral transitions

Fig. S8 Contour plots of the molecular orbitals of complex 3, which are associated with the electronic spectral transitions (See Table S8).

Excited	Composition	CI value	E(eV)	Oscillator	λtheo	Assignment	λexp
State				strength	(nm)		(nm)
				(f)			
1	$H-3 \rightarrow L+1$	0.20748	2.2288	0.0591	556.29	MLCT/ILCT	548
	$H-2 \rightarrow L$	0.47636				MLCT/ILCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.42279				MLCT/LLCT	
	$H \rightarrow L$	0.20132				MLCT/LLCT/ILCT	
2	$H-5 \rightarrow L+1$	0.11180	2.6662	0.0361	465.02	MLCT/ILCT	488
	$H-4 \rightarrow L$	0.65662				MLCT/ILCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.15371				MLCT/LLCT	
3	$H-10 \rightarrow L$	0.10027	3.2731	0.0179	378.80	ILCT/LLCT/LMCT	362
	$H-9 \rightarrow L$	0.52022				ILCT	
	$\text{H-8} \rightarrow \text{L+1}$	0.39456				ILCT/LMCT	
	$H-2 \rightarrow L+3$	0.10472				MLCT	
	$\text{H-1} \rightarrow \text{L+4}$	0.13492				MLCT/LLCT	
4	$H-15 \rightarrow L+3$	0.10955	5.2387	0.1013	236.67	LMCT/LLCT	233
	$\text{H-10} \rightarrow \text{L+3}$	0.38167				LMCT/LLCT	
	$\text{H-9} \rightarrow \text{L+2}$	0.10371				LMCT/LLCT/ILCT	
	$\text{H-8} \rightarrow \text{L+4}$	0.32627				LMCT/LLCT	
	$\text{H-5} \rightarrow \text{L+7}$	0.16350				MLCT/ILCT	
	$H-4 \rightarrow L+10$	0.15908				MLCT/ILCT	
	$H-4 \rightarrow L+11$	0.17974				MLCT/ILCT	

 Table S10 Computed parameters from TDDFT calculations on complex 4 for electronic spectral properties in dichloromethane solution

% Contribution		Fra	gments	
of fragments to	Ru	PMe ₃	L-Cl	C1
HOMO (H)	66	4	14	16
H-1	71	0	9	20
H-2	77	1	14	8
H-3	65	3	30	2
H-4	46	3	48	3
H-5	48	3	40	9
H-8	2	0	89	9
H-9	9	1	86	4
H-10	0	0	56	44
H-15	4	1	42	53
LUMO (L)	15	0	82	3
L+1	17	0	82	1
L+2	55	3	31	11
L+3	51	20	20	9
L+4	47	26	14	13
L+7	3	0	96	1
L+10	3	1	96	0
L+11	4	2	93	1

 Table S11 Compositions of the molecular orbitals of complex 4

 associated with the electronic spectral transitions

Fig. S9 Contour plots of the molecular orbitals of complex 4, which are associated with the electronic spectral transitions (See Table S10).

Table S12 Optimization of the reaction conditions for the oxidative coupling of benzylamine to imines^a

2 Catalyst, Air Solvent, N + NH ₃ + H ₂ O								
Entry	Catalyst	Mole % of catalyst	Solvent	Temp, °C	Time, h	Yeild ^b , %		
1	1	1	Toluene	110	4	>99		
2	1	0.5	Toluene	110	4	>99		
3	1	0.1	Toluene	110	4	>99		
4	1	0.01	Toluene	110	4	>99		
5	1	0.01	Toluene	110	1	>99		
6	1	0.001	Toluene	110	1	>99		
7	1	0.001	Toluene	110	30 min	99		
8	1	0.001	Toluene	110	10 min	78		
9	1	0.001	Toluene-EtOH (8:2)	110	30 min	67		
10	1	0.001	EtOH	80	30 min	65		
11	1	0.0001	Toluene	110	30 min	35		
12	1	0.001	Toluene	rt	30 min	N.O.		
13	1	0.5	Toluene	rt ^c	2	71		
14	1	0.5	Toluene	rt ^c	4	99		
15	1	0.001	Acetonitrile	85	30 min	78		
16	1	0.001	Toluene	110	30 min	11^d		

^{*a*} Reaction conditions: Catalyst, [Ru₂(PPh₃)₂(L-OCH₃)₂Cl₃]Cl; substrate, benzylamine(0.5mmol); solvent (5.0 mL).

0.00

0.001

0.001

0.001

17

18

19

20

1

2

3

4

^b Yield was determined by GCMS and the selectivity of imine was 100%.

^c Room temperature stirring. ^d Reaction was performed under nitrogen atmosphere.

Toluene

Toluene

Toluene

Toluene

110

110

110

110

30 min

30 min

30 min

30 min

N.O.

98

95

96

complex	1	2	4
empirical formula	$C_{68}H_{62}Cl_3N_4O_4P_2Ru_2,$	$C_{68}H_{62}Cl_3N_4P_2Ru_2,$	C ₆₄ H ₅₀ Cl ₇ N ₄ P ₂ Ru ₂ ,
	C7H8, Cl ⁻ , 2H2O	C7H8, Cl ⁻ , H2O	C7H8, Cl ⁻ , 0.7 H2O
formula weight	1532.00	1450.19	1526.60
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	C2/c	C2/c	C2/c
<i>a</i> (Å)	33.324(3)	32.5574(15)	32.926(5)
<i>b</i> (Å)	17.1944(14)	17.2458(6)	17.173(2)
<i>c</i> (Å)	26.901(3)	26.4277(10)	26.459(3)
α (°)	90	90	90
β (°)	115.272(3)	112.892(3)	113.647(4)
γ (°)	90	90	90
$V(Å^3)$	13939(2)	13669.9(10)	13705(3)
Ζ	8	8	8
$D_{ m calcd}$ /mg m ⁻³	1.428	1.409	1.480
F (000)	6140	5548	5584
crystal size (mm)	$0.20\times~0.18\times~0.12$	$0.12 \times 0.11 \times 0.08$	$0.15\times\ 0.12\times\ 0.10$
<i>T</i> (K)	273	296	273
μ (mm ⁻¹)	0.688	0.687	0.845
$R1^a$	0.0657	0.0397	0.1066
wR2 ^b	0.1637	0.1103	0.3686
GOF ^c	1.089	1.109	1.110

Table S13 Crystallographic data for complexes 1, 2 and 4

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{*b*} wR2 = $[\Sigma \{w(F_o^2 - F_o^2)^2\} / \Sigma \{w(F_o^2 -$

$$\nabla wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)\}]^{1/2}.$$

^c GOF = $[\Sigma(w(F_o^2 - F_c^2)^2)/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.