Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Fluorescence "turn-on" probe for the detection of HSO₃- based on pyrene-functionalized mesoporous silica material

Xinyue Zhao,^{a#} Qian Zhao,^{a#} Yating Lu,^a Wen Xu,^a and Jing Wang^{ab*}

^aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China. ^bGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development

Chemistry Technology and Resource Developmen

[#]These authors contributed equally to this work.

E-mail: wjwyj82@gxu.edu.cn (J. Wang)

Table S1 Surface area, pore volume and pore diameter of SBA-15 and PYA-SBA-15

Sample	$SBET^{a}(m^{2} \cdot g^{-1})$	$V_{p}^{b}(cm^{3} \cdot g^{-1})$	D _p ^c (nm)
SBA-15 ^[1]	486	1.24	10.20
PYA-SBA-15	287	0.64	9.72

^a the BET surface area, ^b the average pore diameter, ^c the total pore volume

Table S2 The performance comparison of PYA–SBA–15 with recently reported nanomaterial- based methods for the detection of HSO_3^-

Material	LOD (µmol/L)	Detection media	Detection mode	Ref.
PYA-SBA-15	7.60	Aqueous solution	Turn on	This work
NI	2.05	DMF:H ₂ O=3:7	Turn on	[2]
Probe 1	3.21	DMSO:H ₂ O=1:1	Ratiometric	[3]
MITO-TPE	27.22	DMSO	Turn on	[4]
Cou-F	0.65	DMSO	Turn on	[5]
Au NCs	12.0	Aqueous solution	Turn on	[6]
Ir1@MSNs-NH ₂	0.80	DMSO:H ₂ O=1:5	Turn on	[7]
QNP	2.10	2% DMSO	Turn off	[8]
Dual-site fluorescent probe	5.53	DMSO	Turn off	[9]

References

- [1] Huang J, Wang J, Li D, et al., Terthiophene-functionalized mesoporous silica-based fluorescence sensor for the detection of trace methyl orange in aqueous media.
 Microchimica Acta 2021, 188 (12), 410
- [2] Wang Y, Zhou F, Meng Q, et al., A novel fluorescence probe for the reversible detection of bisulfite and hydrogen peroxide pair in vitro and in vivo. Chemistry-An Asian Journal 2021, 16 (21), 3419-3426.
- [3] Mu X., Zhu, J., Yan, L.. Tang, N., A ratiometric fluorescent probe for the rapid and specific detection of HSO- 3 in water samples. Luminescence 2021, 36 (4), 923-927.
- [4] Yang X, Tang J, Zhang D, et al., An AIE probe for imaging mitochondrial SO2- induced stress and SO2 levels during heat stroke. Chemical Communications 2020, 56 (86), 13217-13220.
- [5] Wang X, Li M, Duan T, et al., A dual responsive fluorescent probe for selective detection of cysteine and bisulfite and its application in bioimaging. RSC Advances 2021, 12 (2), 874-877.
- [6] Sachdev A, Raj R, Matai I, et al., Label-free fluorescence "turn-on" detection of SO2- 3 by gold nanoclusters: Integration in a hydrogel platform and intracellular detection. Analytical Methods 2019, 11 (9), 1214-1223.
- [7] Li X, Zeng R, Xie C, et al., Silica nanoparticles doped with a benzo[e]indolium-tethered iridium(iii) complex for reversible detection of HSO- 3and Hg²⁺/Cu²⁺ in water. Dyes and Pigments 2019, 165, 128-136.
- [8] Shang Z, Liu J, Hu Z, et al., A near-infrared fluorescence probe for the detection of bisulfite in vivo and food samples. Dyes and Pigments 2022, 200, 110119
- [9] Wang H, Wu X, Yang S, et al., A dual-site fluorescent probe for separate detection of hydrogen sulfide and bisulfite. Dyes and Pigments 2019, 160, 757-764.

Fig. S1 Fluorescence spectra of PYA-SBA-15 (0.05 g/L) at different pH values.

Fig. S2 Fluorescence spectra of PYA-SBA-15 (0.05 g/L) in the absence and presence of SO_3^{2-} at pH=9.0.

Fig. S3 Fluorescence intensity changes (I_0/I) of PYA-SBA-15 in the presence of HSO₃⁻ (1.0×10⁻⁴ mol/L) and each of the other anions (3.0×10⁻⁴ mol/L) in aqueous solution (20 mmol/L HEPES buffer, pH = 6.0, I_0 and I represent the fluorescence intensity of PYA-SBA-15 at 398 nm in the absence and presence of anions, respectively).

Fig. S4 Fluorescence repeated cycles at pH 6.0 and 9.0.