

	S_0	T_1	$\Delta (T_1-S_0)$		
L(Ir1-C2)	2.026	2.023	-0.003		
L(Ir1-C12)	2.027	1.983	-0.044		
L(Ir1-C18)	2.027	2.041	0.014		
L(Ir1-N31)	2.190	2.156	-0.034		
L(Ir1-N41)	2.189	2.205	0.016		
L(Ir1-N51)	2.190	2.213	0.023		
A(Ir1-C2-N51)	53.33	53.89	0.56		
A(Ir1-N41-N51)	41.87	42.61	0.74		
D(Ir1-C2-C5-C52)	0.580	0.78	0.2		
D(C2-C5-C52-N51)	-1.420	-1.09	0.33		
	Benzer	ne ligands			
C6-C5	1.41	1.41	0.00		
C5-C2	1.43	1.43	0.00		
C2-C4	1.41	1.41	0.00		
C4-C7	1.39	1.39	0.00		
C7-C3	1.40	1.40	0.00		
C3-C6	1.39	1.39	0.00		
C5-C52	1.46	1.46	0.00		
	Pyridir	ne ligands			
C48-C49	1.40	1.40	0.00		
C49-C50	1.39	1.39	0.00		
C50-N51	1.34	1.34	0.00		
N51-C52	1.36	1.36	0.00		
C52-C53	1.41	1.41	0.00		
C53-C48	1.39	1.39	0.00		

Table S2. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **2**.

	S ₀	T ₁	$\Delta (T_1-S_0)$		
L(Ir1-C2)	2.028	2.041	0.013		
L(Ir1-C12)	2.015	2.023	0.008		
L(Ir1-C20)	2.027	1.983	-0.044		
L(Ir1-N33)	2.197	2.213	0.016		
L(Ir1-N43)	2.193	2.156	-0.037		
L(Ir1-N53)	2.188	2.205	0.017		
A(Ir1-C12-N33)	53.63	53.35	0.28		
A(Ir1-N53-N33)	41.91	43.37	1.46		
D(Ir1-C12-C14-C33)	0.58	0.60	0.02		
D(C12-C14-C34-N33)	-1.55	-1.52	0.03		
	N-substituted	benzene ligands			
C15-C14	1.40	1.40	0.00		
C14-C12	1.43	1.42	0.01		
C12-C13	1.41	1.40	0.01		
C13-C16	1.39	1.39	0.00		
C16-N60	1.35	1.34	0.01		
N60-C15	1.33	1.33	0.00		
C14-C34	1.46	1.47	0.01		

Table S3. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **3**.

	S_0	T_1	$\Delta (T_1-S_0)$
L(Ir1-C2)	2.027	1.984	-0.043
L(Ir1-C12)	2.024	2.038	0.014
L(Ir1-C19)	2.027	2.024	-0.003
L(Ir1-N32)	2.192	2.206	0.014
L(Ir1-N42)	2.191	2.213	0.022
L(Ir1-N52)	2.183	2.150	-0.033
A(Ir1-C12-N32)	53.44	53.42	-0.020
A(Ir1-N52-N32)	41.99	43.57	1.580
D(Ir1-C12-C14-C33)	1.302	0.290	-1.012
D(C12-C14-C33-N32)	-1.667	-1.447	0.220
	Br-substituted	benzene ligands	
C15-C14	1.406	1.406	0.00
C14-C12	1.427	1.426	-0.001
C12-C13	1.410	1.408	-0.002
C13-C16	1.388	1.389	0.001
C16-C59	1.395	1.394	-0.001
C59-C15	1.389	1.390	0.001
C14-C33	1.466	1.468	0.002
C16-Br51	1.982	1.980	-0.002

Table S4. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **4**.

	S ₀	T ₁	$\Delta (T_1-S_0)$
L(Ir1-C2)	2.028	2.024	-0.004
L(Ir1-C12)	2.026	1.984	-0.042
L(Ir1-C20)	2.026	2.039	0.013
L(Ir1-N33)	2.192	2.156	-0.036
L(Ir1-N42)	2.190	2.204	0.014
L(Ir1-N52)	2.188	2.213	0.025
A(Ir1-C12-N33)	53.40	52.32	-1.08
A(Ir1-N52-N33)	41.94	41.72	-0.22
D(Ir1-C12-C14-C34)	1.233	-1.312	-2.545
D(C12-C14-C34-N33)	-1.587	0.916	2.503
	Br-substituted	pyridine ligands	
C30-C31	1.394	1.430	0.036
C31-C32	1.386	1.382	-0.004
C32-N33	1.343	1.341	-0.002
N33-C34	1.365	1.420	0.055
C34-C35	1.407	1.426	0.019
C35-C30	1.387	1.370	-0.017
C34-C14	1.463	1.413	-0.050
C31-Br59	1.961	1.961	0.000

Table S5. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **5**.

	S ₀	T ₁	$\Delta (T_1-S_0)$
L(Ir1-C2)	2.025	2.041	0.016
L(Ir1-C12)	2.031	2.068	0.037
L(Ir1-C20)	2.029	1.991	-0.038
L(Ir1-N33)	2.187	2.279	0.092
L(Ir1-N43)	2.182	2.203	0.021
L(Ir1-N52)	2.157	2.058	-0.099
A(Ir1-C2-N52)	52.72	50.12	-2.60
A(Ir1-N43-N52)	42.17	40.73	-1.44
D(Ir1-C2-C5-C53)	-0.14	-0.39	-0.25
D(C2-C5-C53-N52)	-2.08	-10.03	-7.95
	N-substituted	pyridine ligands	
C50-C51	1.40	1.41	0.01
C51-N60	1.33	1.32	0.01
N60-N52	1.33	1.38	0.05
N52-C53	1.36	1.41	0.05
C53-C54	1.41	1.38	0.03
C54-C50	1.38	1.41	0.03
C53-C5	1.46	1.46	0.00

Table S6. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **6**.

	\mathbf{S}_0	T ₁	$\Delta (T_1 - S_0)$
L(Ir1-C2)	2.025	1.978	-0.047
L(Ir1-C12)	2.026	2.040	0.014
L(Ir1-C20)	2.029	2.026	-0.003
L(Ir1-N33)	2.192	2.202	0.01
L(Ir1-N43)	2.187	2.222	0.035
L(Ir1-N51)	2.190	2.162	-0.028
A(Ir1-C2-N51)	53.45	52.43	-1.02
A(Ir1-N43-N51)	41.87	41.70	-0.17
D(Ir1-C2-C5-C52)	0.863	-1.17	-2.033
D(C2-C5-C52-N51)	-1.44	0.74	2.18
	N-substituted	pyridine ligands	
C50-N58	1.35	1.38	0.03
N58-C59	1.33	1.33	0.00
C59-N51	1.34	1.34	0.00
N51-C52	1.37	1.41	0.04
C52-C53	1.41	1.43	0.02
C53-C50	1.38	1.37	0.01
C52-C5	1.46	1.42	0.04

Table S7. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for 7.

	S ₀	T ₁	$\Delta (T_1 - S_0)$
L(Ir1-C2)	2.027	1.985	-0.042
L(Ir1-C12)	2.028	2.044	0.016
L(Ir1-C20)	2.030	2.022	-0.008
L(Ir1-N33)	2.190	2.208	0.018
L(Ir1-N43)	2.191	2.211	0.02
L(Ir1-N50)	2.177	2.139	-0.038
A(Ir1-C2-N50)	53.02	52.09	-0.93
A(Ir1-N43-N50)	41.80	41.49	-0.31
D(Ir1-C2-C5-C51)	1.27	-1.51	-2.78
D(C2-C5-C51-N50)	-1.35	1.00	2.35
	N-substituted	pyridine ligands	
N60-C58	1.34	1.39	0.05
C58-C56	1.39	1.38	0.01
C56-N50	1.34	1.34	0.00
N50-C51	1.36	1.42	0.06
C51-C52	1.41	1.42	0.01
C52-N60	1.33	1.32	0.01
C51-C5	1.46	1.42	0.04

Table S8. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **8**.

	S ₀	T_1	$\Delta (T_1-S_0)$
L(Ir1-C2)	2.029	1.982	-0.047
L(Ir1-C12)	2.028	2.038	0.01
L(Ir1-C20)	2.028	2.026	-0.002
L(Ir1-N33)	2.190	2.201	0.011
L(Ir1-N43)	2.190	2.220	0.03
L(Ir1-N50)	2.193	2.164	-0.029
A(Ir1-C2-N50)	53.33	52.28	-1.05
A(Ir1-N43-N50)	42.02	41.84	-0.18
D(Ir1-C2-C5-C51)	1.53	-0.29	-1.82
D(C2-C5-C51-N50)	-1.41	0.48	1.89
	N-substituted	pyridine ligands	
C59-C56	1.40	1.43	0.03
C56-C54	1.39	1.39	0.00
C54-N50	1.34	1.34	0.00
N50-C51	1.37	1.41	0.04
C51-N58	1.34	1.37	0.03
N58-C59	1.33	1.32	0.01
C51-C5	1.46	1.41	0.05

Table S9. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **9**.

	S_0	T_1	$\Delta (T_1-S_0)$		
L(Ir1-C2)	2.029	2.022	0.007		
L(Ir1-C12)	2.009	1.980	-0.029		
L(Ir1-C18)	2.025	2.037	0.012		
L(Ir1-N31)	2.196	2.154	-0.042		
L(Ir1-N41)	2.188	2.200	0.012		
L(Ir1-N51)	2.199	2.228	0.029		
A(Ir1-C12-N31)	53.54	52.15	-1.39		
A(Ir1-N51-N31)	42.06	41.52	-0.54		
D(Ir1-C12-C13-C32)	0.311	-2.256	-2.567		
D(C12-C13-C32-N31)	-1.621	-1.542	3.163		
	N-substituted b	benzene ligands			
C14-C13	1.400	1.437	0.037		
C13-C12	1.436	1.490	0.054		
C12-N60	1.351	1.332	-0.019		
N60-C15	1.336	1.344	0.008		
C15-C58	1.398	1.422	0.024		
C58-C14	1.389	1.372	-0.017		
C13-C32	1.463	1.402	-0.061		

Table S10. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **10**.

	S ₀	T_1	$\Delta (T_1-S_0)$		
L(Ir1-C2)	2.031	1.984	-0.047		
L(Ir1-C12)	1.997	2.013	0.016		
L(Ir1-C18)	2.025	2.023	-0.002		
L(Ir1-N31)	2.205	2.220	0.015		
L(Ir1-N41)	2.191	2.211	0.02		
L(Ir1-N51)	2.198	2.164	-0.034		
A(Ir1-C12-N31)	53.89	53.87	-0.02		
A(Ir1-N51-N31)	42.22	43.75	1.53		
D(Ir1-C12-C13-C32)	-0.41	-1.04	-0.63		
D(C12-C13-C32-N31)	-1.87	-1.65	0.22		
	2N-substituted	benzene ligands			
C14-C13	1.39	1.40	0.01		
C13-C12	1.43	1.43	0.00		
C12-N59	1.35	1.35	0.00		
N59-C15	1.33	1.33	0.00		
C15-N58	1.34	1.34	0.00		
N58-C14	1.34	1.34	0.00		
C13-C32	1.46	1.46	0.00		

Table S11. The selected bond lengths (Å), angles (°) and dihedral angles (°) of the S_0 and T_1 states and the corresponding modification between the two states for **11**.

	\mathbf{S}_{0}	T_1	$\Delta (T_1-S_0)$		
L(Ir1-C2)	2.029	2.027	-0.002		
L(Ir1-C12)	2.023	1.968	-0.055		
L(Ir1-C18)	2.026	2.039	0.013		
L(Ir1-N31)	2.197	2.175	-0.022		
L(Ir1-N41)	2.192	2.200	0.008		
L(Ir1-N51)	2.185	2.223	0.038		
A(Ir1-C12-N31)	53.67	52.99	-0.068		
A(Ir1-N51-N31)	42.00	41.93	-0.07		
D(Ir1-C12-C14-C32)	1.175	-2.095	-3.27		
D(C12-C14-C32-N31)	-1.493	0.964	2.457		
	N-substituted b	enzene ligands			
C15-C14	1.404	1.422	0.018		
C14-C12	1.420	1.480	0.06		
C12-C13	1.412	1.416	0.004		
C13-N58	1.338	1.336	-0.002		
N58-C59	1.343	1.370	0.027		
C59-C15	1.388	1.378	-0.01		
C14-C32	1.468	1.411	-0.057		

Table S12. Selected reorganization energy E_r (cm⁻¹) and the vibrational normal mode frequencies ω (cm⁻¹) for 1-11.

1		2	, ,	3		4		5		6		7	
ω	Er	ω	Er	ω	Er	ω	Er	ω	Er	ω	Er	ω	Er
42	11	41	9	31	13	20	5	31	17	30	9	33	7
50	5	50	6	37	11	37	2	32	54	31	7	42	13
85	7	162	11	51	1	46	22	42	52	41	17	43	8
162	6	204	10	155	4	112	7	49	22	50	13	50	10
163	8	228	12	163	7	170	11	81	64	85	10	85	5
205	10	229	21	191	3	179	27	117	70	147	19	118	8
230	29	259	37	232	13	218	3	118	435	160	28	123	7
260	42	271	20	262	71	238	23	148	68	162	5	162	6
271	26	302	16	303	34	275	16	163	264	203	9	205	20
303	33	303	17	382	12	288	58	164	118	228	14	205	6
376	14	378	16	444	9	325	16	187	33	229	60	227	35
455	9	453	11	447	3	466	13	204	159	258	70	260	59
643	7	644	9	643	5	672	18	204	62	271	44	270	13
644	5	653	22	650	5	682	22	229	288	272	9	272	14
653	10	653	6	653	14	686	83	262	34	302	32	304	41
654	16	679	44	679	38	742	2	271	180	304	14	376	15
678	10	682	26	683	44	777	12	276	42	376	10	463	25
679	28	690	19	699	10	782	87	278	91	452	6	486	6
684	52	775	43	749	2	1024	31	286	48	492	13	491	7
776	52	777	23	776	45	1030	45	303	464	639	9	519	6
778	9	1024	5	777	18	1036	25	305	86	670	80	525	14
1025	62	1026	27	1026	92	1039	2	376	14	682	7	640	99
1026	47	1026	74	1051	128	1040	8	376	29	713	19	659	16
1039	23	1039	21	1055	45	1051	71	428	108	784	10	691	36
1040	7	1040	6	1064	17	1052	36	442	257	1025	19	797	114
1051	70	1051	114	1086	33	1061	25	454	25	1025	76	1033	15
1051	77	1057	87	1087	4	1081	3	485	40	1047	32	1038	17
1061	40	1085	44	1088	14	1083	4	489	172	1050	102	1048	63
1086	39	1131	14	1130	14	1112	43	490	30	1051	6	1051	40
1131	23	1133	14	1193	86	1153	34	519	19	1061	16	1051	24
1135	8	1155	5	1272	10	1166	52	521	99	1084	19	1061	24
1185	20	1185	21	1300	2	1192	40	588	31	1088	8	1109	53
1193	87	1193	88	1316	12	1269	16	683	22	1110	9	1153	18
1271	9	1270	8	1333	73	1334	29	763	17	1153	15	1190	29
1317	13	1316	16	1335	18	1335	26	784	27	1193	12	1272	79
1335	84	1333	73	1346	77	1341	91	786	36	1208	45	1274	7
1337	8	1335	6	1347	37	1410	33	1019	118	1346	19	1305	54
1347	111	1346	128	1460	45	1471	102	1026	17	1347	17	1336	7
1459	8	1459	49	1478	10	1482	152	1030	13	1363	81	1338	28
1460	37	1479	13	1490	222	1508	220	1051	31	1430	85	1359	107
1479	7	1490	165	1491	2	1515	8	1058	55	1467	124	1440	94
1489	153	1490	40	1511	35	1587	307	1081	14	1482	83	1470	20

1490	57	1513	208	1514	158	1604	2	1089	11	1511	87	1487	125
1513	132	1516	73	1516	81	1632	34	1144	15	1514	50	1512	121
1516	138	1597	99	1597	184	1640	28	1213	45	1581	128	1516	36
1597	86	1598	133	1598	42	1641	28	1244	67	1634	87	1517	5
1597	122	1615	16	1614	5			1301	20	1642	20	1565	372
1615	27	1616	40	1615	30			1348	64			1629	16
1615	11	1639	50	1616	21			1407	210			1640	14
1616	22	1641	50	1639	55			1476	52			1642	13
1639	55	1653	44	1641	44			1478	15				
1642	41	1654	23	1653	14			1490	17				
1652	35							1597	12				
1653	28							1602	35				
								1634	305				

Table S12 (continued). Selected reorganization energ	E_r (cm ⁻¹) and the vibrational
normal mode frequencies ω (cm ⁻¹	¹) for 1-11 .

			norr	(cm^{-1}) for 1-11 .				
7		9		10	10		1	
ω	Er	ω	Er	ω	Er	ω	Er	
34	5	29	4	30	10	30	15	
43	15	30	3	158	10	40	10	
50	8	40	13	203	5	50	7	
84	7	48	5	227	19	85	11	
117	5	82	7	232	23	115	9	
146	9	119	8	257	39	147	11	
160	23	160	14	272	9	161	13	
205	13	198	4	275	6	203	14	
226	43	227	14	300	35	227	82	
259	60	258	37	304	5	260	84	
269	25	272	15	379	13	270	55	
274	11	385	5	451	10	303	64	
302	54	519	9	643	5	376	8	
377	7	637	13	644	7	454	9	
445	5	653	18	653	20	593	20	
499	13	692	112	654	8	641	50	
679	92	775	3	680	51	722	103	
680	28	793	30	683	22	776	5	
684	35	820	2	695	12	781	2	
777	6	1022	66	776	48	975	4	
788	64	1025	13	777	21	1025	14	
1022	109	1026	12	1026	29	1029	82	
1048	97	1033	63	1027	75	1046	56	
1051	21	1040	4	1039	25	1055	41	
1053	9	1057	13	1052	143	1062	37	
1060	7	1077	87	1058	63	1090	25	
1078	32	1084	34	1086	20	1116	20	

1108 29 1102 35 1087 27 1132 18 1124 32 1132 8 1131 19 1136 29 1151 6 1137 15 1132 6 1187 49 1187 16 1155 28 1155 8 1199 48 1248 25 1158 13 1185 24 1283 33 1275 16 1188 75 1195 90 1334 15 1277 11 1267 16 1276 15 1344 132 1291 32 1312 11 1317 13 1434 33 1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11516 1137 15 1132 6 1187 49 1187 16 1155 28 1155 8 1199 48 1248 25 1158 13 1185 24 1283 33 1275 16 1188 75 1195 90 1334 15 1277 11 1267 16 1276 15 1344 132 1291 32 1312 11 1317 13 1434 33 1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1248 25 1158 13 1185 24 1283 33 1275 16 1188 75 1195 90 1334 15 1277 11 1267 16 1276 15 1344 132 1291 32 1312 11 1317 13 1434 33 1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1275161188751195901334151277111267161276151344132129132131211131713143433137221132710133383146568144719413431881345123149318614711814103214617151023114909147946146133151331
1277 11 1267 16 1276 15 1344 132 1291 32 1312 11 1317 13 1434 33 1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1291 32 1312 11 1317 13 1434 33 1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1372 21 1327 10 1333 83 1465 68 1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1447 194 1343 188 1345 123 1493 186 1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1471 18 1410 32 1461 7 1510 231 1490 9 1479 46 1461 33 1513 31
1490 9 1479 46 1461 33 1513 31
1491 19 1513 41 1478 15 1575 99
1494 296 1516 313 1491 35 1615 87
1589 221 1581 209 1491 199 1653 22
1633 120 1615 115 1513 209
1633 247 1514 37
1651 84 1516 32
1654 27 1598 38
1599 195
1615 6
1616 48
1640 95
1643 12
1653 59
1654 7

Table S13. Relative Energy Gaps (in kcal/mol) Between the Stationary Points along the MLCT $\rightarrow {}^{3}MC \rightarrow {}^{1}GS$ Channels and the ${}^{3}MLCT$ State for 1-7.

Figure. S2 The calculated Huang-Rhys factors versus the normal mode wavenumber at the ground state for complexes 3, 4, 9 and 11.

Normal Mode Wavenumber (cm⁻¹)

Normal Mode Wavenumber (cm⁻¹)

Figure S3. Positive mode displacement vectors with maximum reorganization energy and regularized mode frequencies for complexes 1 (a), 2 (b) and 10 (c).

Figure S4. Positive mode displacement vectors with maximum reorganization energy and regularized mode frequencies for complexes 9 (a) and 11 (b).

Figure S5. Positive-mode displacement vectors with maximum reorganization energy and regularized mode frequencies for complexes 5 (a), 6 (b), 7 (c) and 8 (d).

Figure S6. Positive-mode displacement vectors with maximum reorganization energy and regularized mode frequencies for complexes 3 (a) and 4 (b).

	Vacuum	CH ₂ Cl ₂	Δ (Vacuum - CH ₂ Cl ₂)
L(Ir1-C2)	2.026	2.028	0.002
L(Ir1-C12)	2.027	2.027	0.000
L(Ir1-C18)	2.027	2.028	0.001
L(Ir1-N31)	2.190	2.189	-0.001
L(Ir1-N41)	2.189	2.189	0.000
L(Ir1-N51)	2.190	2.188	-0.002
A(Ir1-C2-N51)	53.33	53.33	0.000
A(Ir1-N41-N51)	41.87	41.87	0.000
D(Ir1-C2-C5-C52)	0.580	1.306	0.726
D(C2-C5-C52-N51)	-1.420	-1.435	-0.015
	Benzene	e ligands	
C6-C5	1.41	1.41	0.000
C5-C2	1.43	1.43	0.000
C2-C4	1.41	1.41	0.000
C4-C7	1.39	1.39	0.000
C7-C3	1.40	1.40	0.000
C3-C6	1.39	1.39	0.000
C5-C52	1.46	1.47	0.010
	Pyridi	ne ligands	
C48-C49	1.40	1.40	0.000
C49-C50	1.39	1.39	0.000
C50-N51	1.34	1.34	0.000
N51-C52	1.36	1.36	0.000
C52-C53	1.41	1.41	0.000
C53-C48	1.39	1.39	0.000

Table S14. Important structural parameters calculated separately in the S_0 state using vacuum and solvent models.

	Vacuum	CH ₂ Cl ₂	Δ (Vacuum - CH ₂ Cl ₂)
L(Ir1-C2)	2.041	2.040	-0.001
L(Ir1-C12)	2.023	2.027	0.004
L(Ir1-C18)	1.983	1.984	0.001
L(Ir1-N31)	2.213	2.217	0.004
L(Ir1-N41)	2.156	2.158	0.002
L(Ir1-N51)	2.205	2.198	-0.007
A(Ir1-C2-N51)	53.35	53.20	-0.15
A(Ir1-N41-N51)	43.37	43.20	-0.17
D(Ir1-C2-C5-C52)	0.60	0.26	-0.34
D(C2-C5-C52-N51)	-1.52	-0.45	1.07
	Benzene	ligands	
C6-C5	1.41	1.41	0.000
C5-C2	1.43	1.43	0.000
C2-C4	1.41	1.41	0.000
C4-C7	1.39	1.39	0.000
C7-C3	1.40	1.40	0.000
C3-C6	1.39	1.39	0.000
C5-C52	1.46	1.47	0.010
	Pyridir	ne ligands	
C48-C49	1.40	1.40	0.000
C49-C50	1.39	1.39	0.000
C50-N51	1.34	1.34	0.000
N51-C52	1.36	1.36	0.000
C52-C53	1.41	1.41	0.000
C53-C48	1.39	1.39	0.000

Table S15. Important structural parameters calculated separately in the $T_{\rm 1}$ state

using vacuum and solvent models.