Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Highly photo- and triboluminescent lanthanide(III) coordination polymers based on diphosphine dioxides containing azaheterocyclic linkers

Yuliya A. Bryleva,^{*} Vladislav Yu. Komarov, Ludmila A. Glinskaya, Alexander V. Artem'ev, Maria P. Davydova, Mariana I. Rakhmanova, Denis G. Samsonenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Academician Lavrentiev Avenue, Novosibirsk 630090, Russian Federation

^{*}Corresponding author

E-mail address: bryleva@niic.nsc.ru (Yu. A. Bryleva)

Contents

Table S1. Selected bond lengths and angles for CPs 1, 4, and 6
Table S2. Selected bond lengths and angles for 3
Figure S1. FT-IR spectra of compounds L^{1-3} and CPs 1–6
Figure S2. Projection of the crystal structure of 1 perpendicular to the polymer chains and view
along the polymer chain direction focused on FF contacts7
Figure S3. Projection of the crystal structure of 3 perpendicular to the polymer chains and view
along the polymer chain direction focused on FF contacts
Figure S4. Projection of the crystal structure of 4 perpendicular to the polymer chains and view
along the polymer chain direction focused on FF contacts9
Figure S5. Projection of the crystal structure of 6 perpendicular to the polymer chains and view along
the polymer chain direction focused on FF contacts
Figure S6. Simulated XRPD patterns of CPs 1, 3, 4 and 6, and experimental ones of 1–611
Figure S7. TG, DTA, and DTG of CPs 1–612
Figure S8. Excitation and emission spectra of L ¹ , L ² , and L ³ in the solid state at 300 K13
Figure S9. Kinetics of photoluminescence decay of CPs 1–6 in the solid state at 300 K14
Figure S10. Solid-state emission spectrum of [Gd(hfac) ₃ (H ₂ O) ₂] at 77 K15

	1		4	6		
Bond	Bond lengths (Å)	Bond	Bond lengths (Å)	Bond	Bond lengths (Å)	
Eu1–O1	2.347 (2)	Tb1–O1	2.290(2)	Tb1–O1	2.334(2)	
Eu1–O2 ⁱ	2.370(2)	Tb1–O2	2.309(2)	Tb1–O2 ⁱ	2.327(2)	
Eu101_1	2.399(2)	Tb1O1_1	2.374(3)	Tb1-O1_1	2.384(2)	
Eu1-O2_1	2.497(2)	Tb1-O2_1	2.402(2)	Tb1-O2_1	2.399(2)	
Eu101_2	2.407(2)	Tb1-O1_2	2.365(3)	Tb1-O1_2	2.262(16)	
Eu1-O2_2	2.463(2)	Tb1-O2_2	2.413(3)	Tb1-O2_2	2.276(15)	
Eu1–O1_3	2.394(2)	Tb1O1_3	2.425(2)	Tb1-O1_3	2.364(4)	
Eu1-O2_3	2.402(2)	Tb1-O2_3	2.363(3)	Tb1-O2_3	2.416(4)	
Eu1-N2C ⁱ	2.866(2)			Tb1O1_4	2.270(11)	
				Tb1O2_4	2.350(11)	
				Tb1O1_5	2.383(6)	
				Tb1-O2_5	2.415(6)	
P1O1	1.490(2)	P1O1	1.497(2)	P1O1	1.492(2)	
P1–C1A	1.789(2)	P1–C1A	1.792(4)	P1–C1A	1.787(4)	
P1–C1B	1.790(2)	P1–C1B	1.788(4)	P1–C1B	1.796(4)	
P1–C1C	1.824(2)	P1–C1C	1.837(4)	P1–C1C	1.821(3)	
P2O2	1.497(2)	P2O2	1.501(3)	P2 O2	1.497(2)	
P2–C1D	1.785(3)	P2–C1D	1.795(4)	P2–C1D	1.788(4)	
P2–C4C	1.820(2)	P2–C3C	1.832(4)	P2–C4C	1.823(3)	
P2-C1E	1.787(3)	P2–C1E	1.788(4)	P2–C1E	1.790(4)	
Angle	Angle size (°)	Angle	Angle size (°)	Angle	Angle size (°)	
O1–Eu1–O2 ⁱ	75.97(5)	O1–Tb1–O2 ⁱ	81.39(9)	O1–Tb1–O2 ⁱ	145.54(9)	
O1–Eu1–O2_2	74.56(5)	O1-Tb1-O2_1	75.62(9)	O1-Tb1-O2_1	73.54(9)	
O1–Eu1–O1_2	143.53(6)	O1-Tb1-O1_1	114.40(9)	O1-Tb1-O1_1	143.13(9)	
O1–Eu1–O1_1	85.66(5)	O1–Tb1–O2_2	142.38(9)	O1–Tb1–O2_3	78.82(13)	
O1–Eu1–O2_1	68.52(5)	O1–Tb1–O1_2	146.03(9)	O1-Tb1-O1_3	83.77(11)	
O1–Eu1–O1_3	90.69(6)	O1–Tb1–O2_3	79.98(9)	O1–Tb1–O2_4	81.4(3)	
O1–Eu1–O2_3	138.88(5)	O1-Tb1-O1_3	77.14(8)	O1-Tb1-O1_5	70.92(17)	
O2 ⁱ –Eu1–O2_2	78.62(5)	O2 ⁱ -Tb1-O2_1	80.54(8)	O1-Tb1-O2_5	105.73(18)	
O2 ⁱ –Eu1–O1_2	92.81(6)	O2 ⁱ -Tb1-O1_1	142.36(9)	O2 ⁱ -Tb1-O2_1	140.45(9)	
O2 ⁱ -Eu1-O1_1	77.73(5)	O2 ⁱ -Tb1-O2_2	73.95(9)	O2 ⁱ -Tb1-O1_1	70.62(9)	
O2 ⁱ -Eu1-O2_1	132.06(5)	O2 ⁱ -Tb1-O1_2	108.62(9)	O2 ⁱ -Tb1-O1_3	104.10(11)	
O2 ⁱ –Eu1–O1_3	145.85(5)	O2 ⁱ -Tb1-O2_3	148.15(9)	O2 ⁱ -Tb1-O2_3	72.62(12)	
O2 ⁱ –Eu1–O2_3	136.18(5)	O2 ⁱ -Tb1-O1_3	79.27(8)	O2 ⁱ -Tb1-O2_4	73.2(3)	
				O2 ⁱ -Tb1-O1_5	82.41(18)	
				O2 ⁱ -Tb1-O2_5	84.39(18)	

 Table S1. Selected bond lengths and angles for CPs 1, 4, and 6.

i: x-1/2, -y+3/2, z-1/2 (complex 1) x-1/2, -y+1/2, z-1/2 (complex 4)

-x+3/2, y-1/2, -z+3/2 (complex 6)

Table S2. Selected bond lengths and angles for 3

3											
Bond	Bond	Bond	Bond	Bond	Bond	Bond	Bond	Bond	Bond	Bond	Bond
	lengths (Å)		lengths (Å)		lengths (Å)		lengths (Å)		lengths (Å)		lengths (Å)
$Eu11-O1_2^i$	2.353(5)	Eu12–O1_1	2.353(5)	Eu21–O1_3	2.344(6)	Eu22–O2_3	2.345(5)	Eu31–O2_5	2.367(6)	Eu32–O1_5	2.356(6)
Eu11-O2_1	2.329(5)	Eu12–O2_2	2.342(5)	$Eu21-O2_4^i$	2.353(5)	Eu22–O1_4	2.387(5)	Eu31–O1_6 ⁱ	2.372(6)	Eu32–O2_6	2.339(5)
Eu11-O1_20	2.420(5)	Eu12–O1_23	2.492(5)	Eu21–O1_26	2.458(5)	Eu22–O1_29	2.49(3)	Eu31–O1_32	2.408(6)	Eu32–O1_35	2.421(7)
Eu11-O2_20	2.429(5)	Eu12–O2_23	2.409(5)	Eu21–O2_26	2.429(6)	Eu22–O2_29	2.43(2)	Eu31–O2_32	2.461(6)	Eu32–O2_35	2.476(6)
Eu11-O1_21	2.427(5)	Eu12-O1_24	2.389(5)	Eu21–O1_27	2.435(6)	Eu22-O1_30	2.464(5)	Eu31–O1_33	2.408(6)	Eu32–O1_36	2.388(6)
Eu11-O2_21	2.475(5)	Eu12–O2_24	2.415(5)	Eu21–O2_27	2.389(6)	Eu22-O2_30	2.381(5)	Eu31–O2_33	2.471(6)	Eu32-O2_36	2.417(6)
Eu11-O1_22	2.489(5)	Eu12-O1_25	2.408(5)	Eu21–O1_28	2.415(6)	Eu22-O1_31	2.39(2)	Eu31–O1_34	2.388(6)	Eu32–O1_37	2.414(6)
Eu11–O2_22	2.374(5)	Eu12–O2_25	2.465(5)	Eu21–O2_28	2.453(6)	Eu22-O2_31	2.42(4)	Eu31–O2_34	2.434(5)	Eu32–O2_37	2.458(6)
$Eu11-N1_2^i$	2.943(5)	Eu12-N1_1	2.863(6)	Eu21-N1_3	2.845(7)	Eu22-N1_4	2.953(6)	$Eu31-N1_6^i$	2.925(6)	Eu32-N1_5	2.874(7)
P1_1-O1_1	1.499(5)	P1_2O1_2	1.496(5)	P1_3O1_3	1.489 (6)	P1_401_4	1.492 (5)	P1_501_5	1.492 (6)	P1_6O1_6	1.496 (6)
P1_1-C1A_1	1.792(8)	P1_2-C1A_2	1.784(7)	P1_3-C1A_3	1.785 (8)	P1_4C1A_4	1.784 (8)	P1_5-C1B_5	1.786 (8)	P1_6-C1A_6	1.791 (9)
P1_1-C1B_1	1.784(7)	P1_2C1B_2	1.789(7)	P1_3-C1B_3	1.766 (9)	P1_4C1B_4	1.792 (8)	P1_5-C1C_5	1.826 (8)	P1_6-C1B_6	1.782 (9)
P1_1-C1C_1	1.830(7)	P1_2-C1C_2	1.841(7)	P1_3-C1C_3	1.834 (8)	P1_4C1C_4	1.836 (8)	P1_5-C4_5	1.783 (9)	P1_6-C1C_6	1.820 (8)
P2_1-O2_1	1.495(5)	P2_2-O2_2	1.498(5)	P3_3-O2_3	1.483 (5)	P2_4O2_4	1.485 (6)	P2_5-O2_5	1.497 (6)	P2_6-O2_6	1.485 (6)
P2_1-C1D_1	1.794(8)	P2_2-C1D_2	1.776(8)	P3_3-C1D_3	1.76 (3)	P2_4C1D_4	1.790 (8)	P2_5-C1D_5	1.764 (9)	P2_6-C1D_6	1.785 (9)
P2_1-C1E_1	1.776(8)	P2_2-C1E_2	1.803(7)	P3_3-C1E_3	1.82 (4)	P2_4C1E_4	1.803 (8)	P2_5-C1E_5	1.800 (8)	P2_6-C1E_6	1.768 (10)
P2_1-C3C_1	1.817(7)	P2_2-C3C_2	1.829(7)	P3_3-C3C_3	1.822 (7)	P2_4-C3C_4	1.809 (8)	P2_5-C3C_5	1.817 (8)	P2_6-C3C_6	1.814 (8)
Angle	Angle size	Angle	Angle size	Angle	Angle size	Angle	Angle size	Angle	Angle size	Angle	Angle size
	(°)		(°)		(°)		(°)		(°)		(°)
O2_1-Eu11- N1_2 ⁱ	129.4(2)	O1_1-Eu12- N1_1	63.9(2)	O1_3-Eu21- N1_3	64.0(2)	O2_3-Eu22- N1_4	127.1(2)	O2_5-Eu31- N1_6 ⁱ	127.0(2)	O1_5-Eu32- N1_5	63.9(2)
O2_1-Eu11- O1_2 ⁱ	74.0(2)	O1_1-Eu12- O1_23	72.1(2)	O1_3–Eu21– O1_26	73.6(2)	O2_3–Eu22– O1_4	74.6(2)	O2_5–Eu31– O1_32	77.2(2)	O1_5-Eu32- O1_35	90.4(2)
O2_1-Eu11- O1_20	140.5(2)	O1_1–Eu12– O2_23	88.8(2	O1_3–Eu21– O2_26	92.5(2)	O2_3–Eu22– O1_29	106.3(6)	O2_5–Eu31– O2_32	67.9(2)	O1_5-Eu32- O2_35	73.0(2)
O2_1-Eu11- O2_20	85.5(2)	O1_1–Eu12– O1_24	134.5(2)	O1_3–Eu21– O1_27	145.4(2)	O2_3–Eu22– O2_29	139.9(5)	O2_5-Eu31- O1_33	137.0(2)	O1_5-Eu32- O1_36	134.5(2)
O2_1-Eu11- O1_21	102.0(2)	O1_1-Eu12- O2_24	143.0(2)	O1_3–Eu21– O2_27	134.7(2)	O2_3–Eu22– O1_30	71.6(2)	O2_5–Eu31– O2_33	109.3(2)	O1_5-Eu32- O2_36	143.9(2)

O2_1-Eu11- O2_21	68.5(2)	O1_1-Eu12- O1_25	79.5(2)	O1_3–Eu21– O1_28	76.0(2)	O2_3–Eu22– O2_30	138.9(2)	O2_5-Eu31- O1_34	137.8(2)	O1_5-Eu32- O1_37	75.8(2)
O2_1-Eu11- O1_22	70.8(2)	O1_1-Eu12- O2_25	133.9(2)	O1_3–Eu21– O2_28	131.7(2)	O2_3-Eu22- O1_31	70.1(5)	O2_5-Eu31- O2_34	70.8(2)	O1_5-Eu32- O2_37	131.7(2)
O2_1-Eu11- O2_22	138.2(2)	O2_2-Eu12- O1_1	75.6(2)	O2_4 ⁱ -Eu21- O1_26	70.6(2)	O2_3-Eu22- O2_31	77.1(8)	01_6 ⁱ -Eu31- 01_32	80.6(2)	O2_6-Eu32- O1_5	76.5(2)

i: x, y-1, z

Figure S1. FT-IR spectra of compounds L^{1-3} and CPs 1–6.

Figure S2. (a) Projection of the crystal structure of 1 perpendicular to the polymer chains and (b) view along the polymer chains (along the [010] direction) focused on F...F contacts (magenta). H atoms and disordered atom positions are omitted for clarity.

Figure S3. (*a*) Projection of the crystal structure of **3** perpendicular to the polymer chains (along the [010] direction) and (*b*) view along the polymer chain direction (along the [100] direction) focused on F...F contacts (magenta). H atoms and disordered atom positions are omitted for clarity.

Figure S4. (*a*) Projection of the crystal structure of **4** perpendicular to the polymer chains and (*b*) view along the polymer chain direction (along the [010] direction) focused on F...F contacts (magenta). H atoms and disordered atom positions are omitted for clarity.

Figure S5. (*a*) Projection of the crystal structure of **6** perpendicular to the polymer chains (along the [010] direction) and (*b*) view along the polymer chain direction (along the [100] direction) focused on F...F contacts (magenta). H atoms and disordered atom positions are omitted for clarity.

Figure S6. Simulated XRPD patterns of CPs 1, 3, 4 and 6 (red), and experimental ones of 1–6 (black).

Figure S7. TG, DTA, and DTG of CPs 1 (*a*), 2 (*b*), 3 (*c*), 4 (*d*), 5 (*e*), and 6 (*f*).

Figure S8. Excitation (left) and emission (right) spectra of L¹ (*a*), L² (*b*), and L³ (*c*) in the solid state at 300 K.

Figure S9. Kinetics of photoluminescence decay of CPs 1–6 in the solid state at 300 K ($\lambda_{ex} = 350$ nm).

Figure S10. Solid-state emission spectrum of [Gd(hfac)₃(H₂O)₂] at 77 K (λ_{ex} = 338 nm).