Supplementary Information(SI)

1. Materials and Instrumentation	1
2. Synthesis of ligands and compound 1-4	1
3. Single Crystal X-ray Crystallography	3
4.Additional Figures	6
5. Reference	

1. Materials and Instrumentation

Materials: CuCl was purchased from Sinopharm Chemical Reagent, isopropanol, N,N-Dimethylformamide (DMF), isonicotinic acid (HINA), Phosphorous acid and titanium tetraisopropanolate (Ti(OⁱPr)₄) were purchased from General Reagent. All the chemicals were commercially available and were used without further purification.

Powder X-ray Diffraction (PXRD): PXRD was recorded on a Haoyuan DX-2700B diffractometer equipped with monochromatized Cu-K α ($\lambda = 1.5418$ Å) radiation in the range of $3^{\circ} \le 2\theta \le 45^{\circ}$, with a scanning rate of 0.03° s⁻¹.

Element Analyses: Element analyses for P, Ti and Cu were performed on a Leeman Prodigy Plus inductivity-coupled plasma Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and C, N and H content were determined by VARIDEL III elemental Analyzer.

Thermogravimetric Analysis (TGA): Thermogravimetric analysis was performed on a PerkinElmer TGA 8000 Thermogravimetric Analyzer under N_2 atmosphere from 50 to 800 °C with a heating rate of 10 °C/min.

Fourier-transform infrared (FT-IR) spectroscopy: Fourier-transform infrared (FT-IR) spectra was performed on Nicolet iS50 FT-IR Spectrometer in the range of 500-4000 cm⁻¹.

Solid-state UV-vis-NIR absorption spectroscopy: All compounds were recorded at room temperature using a powder sample with $BaSO_4$ as a standard on UV3600 UV-vis-NIR spectrometer.

Density functional theory (DFT) calculations: Density functional theory (DFT) calculations were performed with the Gaussian 16 package. The geometries of the clusters were optimized using the B3LYP-D3(BJ) exchange-correlation functional with the 6-311G* basis set for H, C, O, N, P and SDD pseudo potential basis set for Ti. Except H, the positions of all other atoms were frozen. The initial geometries of clusters were taken from the corresponding crystal structure data. No symmetry constraints were used in the optimization. The DOS (density of states) analysis was performed by Multiwfn code^[S1].

Photoelectrochemistry (PEC) measurements: All photoelectrochemistry measurements were carried out using a CHI660 electrochemical workstation using a three-electrode system, with the sample coated indium tin oxide (ITO) glass as the working electrode, a Pt wire as the counter electrode, and a saturated Ag/AgCl electrode as the reference electrode. The working electrode was ITO glass plates coated with a cluster-slurry and the electrolyte was Na₂SO₄ (0.5 M) aqueous solution. For the preparation of working photo-electrodes, the crystal sample (about 5 mg) was dissolved in 0.9 mL ethanol and 0.1 mL 5 Wt% Nafion mixed solution, which was then dropped onto a precleared ITO glass (1×2 cm², 50 Ω ·cm⁻²). The working photoelectrode was obtained after evaporation. The Mott-Schottky plots were also measured over an alternating current frequency of 1000 Hz and 1500 Hz. Electrochemical impedance spectra (EIS) measurements were recorded over a frequency range of 100 kHz-0.1 Hz. The photocurrent tests were carried out with a 300 W xenon lamp.

2. Synthesis of ligands and compound 1-4.

Preparation of 3-[(4-Pyridinylmethylene) amino] benzoic acid (3-Hpyca): The ligand 3-Hpyca was synthesized according to the literature ^[S2]. First, 40 mL of methanol solution of 4pyridinecarboxaldehyde (1.88 mL, 20.0 mmol) was drop-wise added to a 25 mL methanol solution of 3-aminobenzoic acid (2.74 g, 20.0 mmol). Then, the mixture was refluxed for about 3 h. The acquired solid product was filtrated and washed with methanol before drying in air. Yield: ~80% (1.54 g). ¹H NMR (400 MHz, DMSO): δ = 8.77-8.74 (m, 3H), 7.88-7.83 (m, 4H), 7.57 (d, 2H) ppm.

Preparation of 4-[(4-Pyridinylmethylene) amino] benzoic acid (4-Hpyca): The ligand 4-Hpyca was synthesized according to the literature^[S3]. 4-pyridinecarboxaldehyde (1.18 g, 11.02 mmol) was dissolved in methanol (50 mL) and the mixture stirred at 75 °C. 4-aminobenzoic acid (1.51 g, 11.02 mmol) and 4-toluene sulfonic acid (15 mg) were added. After continuous stirring for 12 h, yellow precipitate formed and was filtered and washed with methanol (yield ~90%).¹H NMR (400 MHz, DMSO): δ =7.33 (m, 2H), 7.58 (m, 1H), 7.98 (m, 2H), 8.32 (m, 1H), 8.72 (m, 2H), 9.08 (m, 1H).

Synthesis of 1: Phosphorous acid (10.7 mg, 0.13 mmol), isonicotinic acid (16 mg, 0.13 mmol) and isopropanol (1.5 mL) were added to the glass vial and soniced at room temperature, then $Ti(O^{i}Pr)_{4}$ (0.18 mL, 0.6 mmol) was added. The resultant solution was heated at 80 °C for one day. After cooled to room temperature, colourless crystals of **1** were obtained. Colourless crystals were obtained by washed with fresh isopropanol three times. Yield 80% based on Ti. EA and ICP (%): calculated for formula $C_{42}H_{80}N_2O_{24}P_2Ti_6$, C 37.47, H 5.99, N 2.08, Ti 21.34, P 4.60; found: C 36.60, H 5.79, N 2.00, Ti 20.75, P 4.41.

Synthesis of 2: Phosphorous acid (10.7 mg, 0.13 mmol), 3-[(4-Pyridinylmethylene)amino]benzoic acid (29 mg, 0.13 mmol) and isopropyl alcohol (1.5 mL) were added to the glass vial and soniced at room temperature, then $Ti(O^{i}Pr)_{4}$ (0.18 mL, 0.6 mmol) was added. The resultant solution was heated at 80 °C for three days. After cooled to room temperature, colourless crystals of **2** were obtained. Colourless crystals were obtained by washed with fresh isopropanol three times. Yield 35% based on Ti. EA and ICP (%): calculated for formula $C_{56}H_{88}N_4O_{24}P_2Ti_6$, C 43.37, H 5.72, N 3.61, Ti 18.52, P 3.99; found: C 43.26, H 5.78, N 3.47, Ti 17.85, P 3.63.

Synthesis of 3: Phosphorous acid (10.7 mg, 0.13 mmol), 4-[(4-Pyridinylmethylene)amino]benzoic acid (29 mg, 0.13 mmol), isopropyl alcohol (1.5 mL) were added to the glass vial and soniced at room temperature, then $Ti(O^iPr)_4$ (0.18 mL, 0.6 mmol) was added. The resultant solution was heated at 80 °C for one day. After cooled to room temperature, faint yellow crystals of **3** were obtained. Faint yellow crystals were obtained by washed with fresh isopropanol three times. Yield 86% based on Ti. EA and ICP (%): calculated for formula $C_{56}H_{88}N_4O_{24}P_2Ti_6$, C 43.37, H 5.72, N 3.61, Ti 18.52, P 3.99; found: C 42.99, H 5.82, N 3.52, Ti 17.98, P 3.83.

Synthesis of 4: Phosphorous acid (53 mg, 0.65 mmol), isonicotinic acid (80 mg, 0.65 mmol), CuCl (22 mg, 0.22 mmol), N,N-Dimethylformamide (3.0 mL) and isopropyl alcohol (2.0 mL) were added to the glass vial and soniced at room temperature, then Ti(OⁱPr)₄ (0.92 mL, 3 mmol)

was added. The resultant solution was heated at 80 °C for two days. After cooled to room temperature, orange crystals of **4** were obtained. Orange crystals were obtained by washed with fresh isopropanol three times. Yield 40% based on Ti. EA and ICP (%): calculated for formula $C_{168}H_{350}Cl_3Cu_3N_6O_{85}P_6Ti_{18}$, C 39.07, H 6.83, N 1.70, Ti 17.43, P 3.76, Cu 3.85; found: C 38.82, H 6.56, N 1.63, Ti 17.08, P 3.67, Cu 3.54.

3. Single Crystal X-ray Crystallography

The crystallographic data of compounds 1-3 were collected using a Bruker D8 venture single crystal diffractometer equipped with graphite-monochromatic Mo-K α radiation ($\lambda = 0.71073$ Å) at 150 K, and compound 4 was collected using the same device equipped with graphitemonochromatic Cu-Ka radiation ($\lambda = 1.54184$ Å) at 150 K. Their structures were solved and refined with OLEX2, All non-hydrogen atoms are anisotropically refined by the least square method, all hydrogen atoms are placed at calculated positions and refined using a riding model. The disordered pendant isopropoxy groups in 1-4 are in general treated by splitting into two moieties using PART instruction. SIMU and RIGU are then applied to set universal restraints on the disordered isopropoxy groups to obtain reasonable thermal displacement parameters. ISOR is further employed to some isopropyl groups that are severely disordered and N atoms on pyridine rings to achieve reasonable Uij values. Meanwhile, DFIX and SADI are specifically applied to fix the bond lengths of disordered isopropoxy groups. For compound 4, the disordered pyridine group on isonicotinate is constrained by using AFIX 66 to make a coplanar six-membered ring, and the occupancy of the split part is set as 10.50. Meanwhile, solvent mask, a part of Olex2 package of crystallographic software, is used to calculate the solvent disorder volume in 4 and remove its contribution to the overall intensity data. The masked moieties, namely $2[C_3H_8O]$ and $5.25[H_2O]$ per formula, has been added to the sum formula. The calculated e^{-} of 121 is almost equal to the e^{-} of 118 for 2[C₃H₈O] and 5.25[H₂O]. Moreover, the solvent content of 2[C₃H₈O] and 5.25[H₂O] per formula is also consistent with the element analysis and TGA analysis. The X-ray crystallographic data for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2247993-2247996. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Compound	1	2
Empirical formula	$C_{42}H_{80}N_2O_{24}P_2Ti_6$	$C_{56}H_{90}N_4O_{24}P_2Ti_6$
Formula weight	1346.42	1552.65
T/K	150.00	150.00
Crystal system	Triclinic	Monoclinic
Space group	P-1	$P2_1/n$
a /Å	11.3702(3)	9.8651(5)
b /Å	11.9984(4)	20.88697(9)
c /Å	12.4292(4)	17.8564(8)
α/\circ	70.8620(10)	90
β/°	73.9500(10)	105.759(2)
γ/°	84.3280(10)	90
$V/Å^3$	1539.42(8)	3538.1(3)
Z	1	2
Dcalc /Mg·m ⁻³	1.452	1.457
μ /mm ⁻¹	0.866	0.765
Radiation	ΜοΚα	ΜοΚα
F (000)	700	1616.0
θ range /°	2.577 to 25.360	2.357 to 25.376
Reflections collected	32051	108420
Data completeness	98.9%	99.9%
Data/restraints/ parameters	5571/292/387	6490/781/466
Final R indices $[I>2\sigma(I)]^{a}$	R1 = 0.0221, wR2 = 0.0631	R1 = 0.0362, wR2 = 0.0938
R indices (all data)	R1 = 0.0236, wR2 = 0.0637	R1 = 0.0442, wR2 = 0.1012
Goodness-of-fit on F ^{2b}	1.062	1.039
Largest diff. peak and hole/eÅ-3	0.299 and -0.298	0.686 and -0.354

 Table S1 Crystal data and structure refinements summary for compounds 1-4

Compound	3	4
Empirical formula	$C_{56}H_{90}N_4O_{24}P_2Ti_6$	$C_{168}H_{350.50}Cl_3Cu_3N_6O_{85.25}P_6Ti_{18}$
Formula weight	1552.66	5164.01
T/K	150.00	150.00
Crystal system	Triclinic	Monoclinic
Space group	P-1	C 2/c
a /Å	12.0582(6)	27.5953(7)
b /Å	12.1208(7)	19.5028(5)
c /Å	14.3450(9)	47.0477(12)
α/°	112.778(2)	90
β/°	94.618(2)	92.5160(10)
$\gamma/^{\circ}$	110.303(2)	90
V/ Å ³	1756.13(18)	25296(11)
Z	1	4
Dcalc /Mg·m ⁻³	1.468	1.300
μ /mm ⁻¹	0.771	6.074
Radiation	ΜοΚα	CuKa
F (000)	808	10344
θ range /°	2.909 to 25.385	2.908 to 68.543
Reflections collected	29775	175523
Data completeness	99.6 %	99.3 %
Data/restraints/ parameters	6433 / 218/ 486	23087 / 2056 / 1735
Final R indices	R1 = 0.0328, wR2 =	$P_1 = 0.0087 \text{ w} P_2 = 0.2824$
$[I>2\sigma(I)]^a$	0.0893	K1 = 0.0987, WK2 = 0.2824
R indices (all data)	R1 = 0.0376, wR2 = 0.0932	R1 = 0.1103, wR2 = 0.2943
Goodness-of-fit on F ^{2b}	1.048	1.075
Largest diff. peak and hole/eÅ- 3	0.624 and -0.373	1.897 and -1.016

 $\overline{{}^{a}R_{1} = \sum //Fo/-/Fc/ //\sum /Fo/; wR_{2} = \{\sum w[(Fo)^{2} - (Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2}\}^{1/2} ;$ ${}^{b}GooF = \{\sum w[(Fo)^{2} - (Fc)^{2}]^{2} / (n-p)\}^{1/2}$

4 Additional Figures

Fig. S1 (a) The coordination environments of $\{Ti_6P_2\}$ core in 1, (b) the molecular structure and (c) the packing structure of 1.

Fig. S2 XPS spectrum of 1 (a) and the high resolution XPS spectra of Ti 2p (b).

Fig. S3 (a) The coordination environments of $\{Ti_6P_2\}$ core in 2, (b) the molecular structure and (c) the packing structure of 2.

Fig. S4 The π - π interactions (3.7407(1) Å) form between the peripheral pyridyl groups of 3-pyca ligands of 2.

Fig. S5 (a) The coordination environments of $Ti_3(\mu_3$ -O) unit of 3, (b) the packing structure of 3.

Fig. S6 The π - π interactions (3.8372(2) Å) form between the two adjacent 4-pyca ligands of 3.

Fig.S7 XPS spectrum of 3 (a) and the high resolution XPS spectra of Ti 2p (b).

Fig. S8 (a) The coordination environments of $\{Ti_9P_3\}$ core and copper atoms in 4, (b) the molecular structure and (c) the packing structure of 4.

Fig. S11 High resolution XPS spectra of 1, 3 and 4 for $P_{\rm 2p}.$

Fig. S12 PXRD patterns of 1-4.

Figure 13 PXRD patterns of 1 and 4 recorded on Single Crystal X-ray diffractometer.

Fig.S15 The decoupled ³¹P NMR spectra of 1 and 4 in DCl/D₂O at pH=3.

Fig. S16 The FT-IR spectra of **1-4**. The absorption bands between 2972-2865 cm⁻¹ can be ascribed to the stretching vibrations of C-H bonds from isopropyl groups. The characteristic stretching vibrations of v(C=O) from carboxylate are observed between 1590-1410 cm⁻¹. The intense absorption peaks between 1200-1000 cm⁻¹ are assigned to the stretching vibrations of v(C-O) from isopropanol, the Ti-O vibrations peak are found at wavenumbers between 800-500 cm⁻¹.

Fig. S17 TGA curves of 1-4. The TGA curve of 1 shows a steep decomposition step between 150 °C and 300 °C, the mass loss corresponds to the removal of ten isopropyl groups and two isonicotinate (45.57 %, calculated 45.37 %). Afterwards, the residual 1 gradually transforms into related oxides. The TGA curve of 2 shows two-step decomposition in the range of 120 °C to 330 °C, with a weight loss of calculated 35.19 % corresponding to the complete removal of ten isopropyl groups and partial elimination of 3-pyca. All the ligands are lost when the temperature increases to around 500 °C, corresponding to a further weight loss of 15.62 %. The skeleton of 2 is then entirely destroyed and gives rise to corresponding oxides. The same trend is observed for 3. The two-step decomposition from 170 °C to 330 °C showing a weight loss of 40.11% is assigned to the depletion of ten isopropyl groups and one 4-pyca. The further removal of another 4-pyca is observed between 330 °C and 500 °C, equal to a mass loss of 12.21%. The latter calcination converts the residual into oxides. Compared with 1-3, 4 is relatively unstable, which loses two guest isopropanol and five water molecules (4.10% in total, calculated 4.01%) before 120 °C. The subsequent mass loss of 38.28% during 120 °C and 270 °C corresponds to the removal of forty-two isopropyl groups and two isonicotinate. Afterwards, compound 4 gradually loses the remaining four ligands and three chlorine atoms from 270 °C to 400 °C, according to a weight loss of 10.12%. Finally, it completely transforms to titanium oxide and copper oxide..

Fig.S18 The UV-vis spectra of ligands in 1-4.

Fig. S19 UV-vis spectra of compounds 1-4 in CH₂Cl₂.

Fig. S20 (a) Frontier molecular orbitals of 1 and (b) Frontier molecular orbitals of 2.

Fig. S21 The Mott-Schottky curves of 1-4.

Fig. S22 (a) The Electrochemical impedance spectra of 1-4 and (b) The photocurrent responses of 1-4.

A 4 a 4 a	D 1	Distance	D 1 W-1	Bond Valence
Atom	Bond	Distance/A	Bond Valence	Sum (BVS)
	O(3)	1.7768(9)	1.108	
	O(5)#1	2.0318(9)	0.556	
T ;(1)	O(6)	1.9753(10)	0.649	4 240
11(1)	O(7)#1	2.0041(9)	0.602	4.240
	O(8)	1.8507(10)	0.907	
	O(9)#1	2.1385(10)	0.418	
	O(2)	1.9553(10)	0.683	
	O(4)	1.9552(10)	0.685	
T:(2)	O(5)	1.9638(9)	0.670	1 295
11(2)	O(7)	1.9667(9)	0.663	4.283
	O(11)	2.1063(10)	0.455	
	O(12)	1.7698(10)	1.129	
Ti(4)	O(4)	2.0365(9)	0.549	
	O(7)	1.9113(9)	0.769	
	O(8)	1.7552(9)	1.176	4.204
	O(10)#1	1.9820(10)	0.637	
	O(13)	1.7890(10)	1.073	

Table S2 Bond valence sum (BVS) analysis^[a] of metal ions in 1.

Table S3 Bond valence sum (BVS) analysis^[a] of metal ions in 3.

Atom	Bond	Distance/Å	Bond Valence	Bond Valence Sum (BVS)
Ti(1)	O(005)#1	1.9694(14)	0.658	
	O(006)	1.9883(16)	0.626	4 267
	O(008)#1	2.0326(15)	0.555	4.207
	O(00B)	1.8254(14)	0.971	

	O(00D)#1	2.1504(15)	0.404	
	O(00F)	1.7970(15)	1.053	
	N(1)#2	2.4002(18)	0.262	
	O(005)	1.9629(14)	0.672	
T:(2)	O(009)	2.0613(15)	0.514	4 172
11(2)	O(00A)	1.9922(15)	0.619	4.172
	O(00B)	1.7782(14)	1.105	
	O(00E)	1.8146(15)	1.000	
	O(005)	1.9202(14)	0.751	
	O(007)	1.9586(15)	0.679	
Ti(3)	O(008)	1.9658(15)	0.665	4 102
	O(009)	2.0034(15)	0.538	4.193
	O(00C)	2.0860(14)	0.481	
	O(00G)	1.7868(16)	1.079	

Table S4 Bond valence sum (BVS) analysis^[a] of metal ions in 4.

Atom	Bond	Distance/Å	Bond Valence	Bond Valence
Atom	Dona	Distance/A	Bolid Valence	Sum (BVS)
	O(26)	1.779(4)	1.102	
	O(18)	1.872(4)	0.860	
T :(1)	O(6)	1.953(4)	0.687	4 207
11(1)	O(4)	2.177(3)	0.376	4.297
	O(32)	2.019(4)	0.576	
	O(28)	1.948(4)	0.696	
	O(18)	1.984(4)	0.633	
	O(21)	2.062(5)	0.513	
T :(0)	O(25)	2.226(5)	0.328	4 291
11(9)	O(30)	1.983(5)	0.637	4.281
	O(13)	1.790(5)	1.073	
	O(33)	1.781(5)	1.096	
	O(32)	1.963(5)	1.102	
	O(17)	1.751(6)	0.860	
Ti(7)	O(27)	1.748(6)	0.687	4.371
	O(18)	1.989(4)	0.376	
	O(21)	1.956(5)	0.576	
	O(24)	1.969(4)	0.660	
Ti(6)	O(5)	1.795(4)	1.053	
	O(22)	1.998(4)	0.611	4 217
	O(39)	1.905(4)	0.786	4.21/
	O(1)	2.146(3)	0.409	
	O(8)	1.949(4)	0.698	
Ti(8)	O(22)	2.019(5)	0.576	4.229

Atom	Bond	Distance/Å	Bond Valence	Bond Valence
	0(39)	2 019(4)	0.575	Sull (DVS)
	O(38)	2.019(1)	0.366	-
	$\frac{O(23)}{O(23)}$	2.018(6)	0.575	-
	O(3)	1.783(5)	1.087	-
	O(15)	1.798(5)	1.050	-
	O(39)	1.908(5)	0.778	
	O(23)	1.983(6)	0.638	-
Ti(2)	O(35)	1.790(8)	1.076	3,735
	O(29)	1.926(6)	0.741	
	O(19A)	2.07(3)	0.502	-
	O(20)	1.953(4)	0.691	
	O(14)	1.896(4)	0.799	
	O(16)	1.986(4)	0.630	
Ti(4)	O(10)	1.969(4)	0.660	4.300
	O(34)	1.773(4)	1.120	
	O(12)	2.154(3)	0.400	-
	O(30)	2.168(4)	0.385	4.314
	O(14)	2.029(4)	0.559	
	O(16)	2.005(5)	0.598	
T1(5)	O(7)	2.021(6)	0.575	
	O(2)	1.791(6)	1.070	
	O(31)	1.772(6)	1.126	
	O(11)	1.944(5)	0.706	
	O(37)	1.750(8)	1.195	
Ti(3)	O(14)	1.920(4)	0.757	4.299
	O(7)	1.976(5)	0.645	
	O(9)	1.751(6)	1.192	
	N(1)#1	1.986(13)	0.265	
Cu(1)	Cl(2)	2.423(3)	0.173	0.025
	Cl(1)	2.5071(14)	0.217	0.925
	N(3)	1.971(5)	0.270	
	Cl(2)	2.587(3)	0.139	
$C_{\rm H}(2)$	N(2)	1.960(6)	0.272	0.886
Cu(2)	N(2A)	1.980(1)	0.260	0.000
	Cl(1)	2.425(3)	0.215	

 $[a]V_i = \Sigma S_{ij} = \Sigma exp[(r_0 - r_{ij})/B]$, where r_0 is the length of a single bond (here $r_0 = 1.815$ for $Ti^{iv} - O$; $r_0 = 1.906$ for $Ti^{iv} - N$; $r_0 = 1.480$ for $Cu^L - N$; $r_0 = 1.858$ for $Cu^L - Cl$;), r_{ij} is the bond length between atoms i and j; B is a constant, the "universal parameter" ~0.37 Å; Sij is the valence of a bond between atoms i and j; V_i is the sum of all bond valences of the bonds formed by a given atom i.^[S5]

Atom 1	Atom 1 valence state	Atom 2	Atom 2 valence state	Ro parameter
Р	3	0	2	1.63
Р	3	S	2	2.12
Р	3	Se	2	2.24
Р	3	F	1	1.53

Table S5 Bond valence parameters available from Brown .I .D's list for P³⁺.

Table S6 Bond valence sum (BVS) analysis^[a] of P element in 1.

Atom	Bond	Distance/Å	Bond Valence	Bond Valence Sum (BVS)
	O(10)	1.5191(10)	1.350	
P(1)	O(6)	1.5230(10)	1.335	4.027
	O(2)	1.5211(10)	1.342	

Atom	Bond	Distance/Å	Bond Valence	Bond Valence Sum (BVS)
	O(30)	1.513(5)	1.373	
P(1)	O(6)	1.526(4)	1.324	4.065
	O(24)	1.514(4)	1.368	
P(2)	O(8)	1.509(5)	1.390	
	O(10)	1.518(4)	1.351	4.062
	O(29)	1.527(6)	1.321	
P(3)	O(28)	1.507(4)	1.394	
	O(20)	1.508(4)	1.390	4.134
	O(11)	1.519(5)	1.350	

Table S7 Bond valence sum (BVS) analysis^[a] of P element in 4.

 $[a]V_i = \Sigma S_{ij} = \Sigma exp[(r_0 - r_{ij})/B]$, where r_0 is the length of a single bond (here $r_0 = 1.63$ for P^{III}-O;), r_{ij} is the bond length between atoms i and j; B is a constant, the "universal parameter" ~0.37 Å; Sij is the valence of a bond between atoms i and j; V_i is the sum of all bond valences of the bonds formed by a given atom i.

5 Reference

- [S1] Tian Lu, Feiwu Chen, J. Comput. Chem., 2012, 33, 580-592.
- [S2] Jing-Yun Wu, Fu-Yin Cheng, et al. J. Solid State Chem., 2016, 242, 8-13.
- [S3] L. Zhang, Qiaoyi Wang, J. Molecular Structure., 2018, 1155, 389-393.
- [S4] A. Spek, Acta Cryst. Sect. C., 2015, 71, 9-18.
- [S5] Simin Hou, Qiaohong L, Dalton Trans., 2020, 49, 11005-11009.