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In the supplementary material, detailed descriptions are given for the TADF database construction, the 

conformer set generation, the deep learning methodologies, the test set performances for energies and 

oscillator strengths, as well as the cut-off effect analysis. 

TADF Database Construction

The TADF database is inherited from our previous work1 for the adversarial generation of TADF molecules, 

which contains 13594 molecules with D1A1 structure (being of donor-acceptor type). The molecules are 

computationally synthesized based on the BRICS retrosynthetic rule.4 The molecular ground state (S0) 

geometries are optimized at the B3LYP/6-31G(d,p) level using Gaussian 16,5 based on which high throughput 

calculations are implemented with TDDFT/ B3LYP/6-31G(d,p) to obtain the excited state properties. The first 

three singlet and triplet excitation energies, the first three singlet oscillator strengths, and the first singlet-

triplet splitting, are consequently exported for the sample labelling. The dataset is partitioned as 8/1/1 for 

training, validation, and test sets respectively. 
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Regarding the accuracies of the excited-state properties estimation, it is known that TDDFT calculations with 

many functionals can underestimate the excitation energy of charge-transfer complexes. However, according 

to the report from Bombarelli et al.,2 TDDFT/B3LYP calculations for the vertical absorption energy and ΔEST 

show excellent correlations with the experimental emission energy and the measured Arrhenius activation 

energy (exp. ΔEST) respectively. While by using other functionals (including M06-2X, BH&HLYP, CAM-

B3LYP, and ω-B97X-D etc.) does not improve the performance of calibration, implying the relative 

robustness of the B3LYP functional (which contains 20% Hartree–Fock exchange) in estimating the empirical 

photophysical parameters. 

Despite the fact that B3LYP can properly describe the excitation energy and experimental ΔEST, the functional 

is still observed to underestimate f, leading to further uncertainties in photophysical properties calculation by 

merely using the density functional theory. We hereby claim that the paper only deals with the B3LYP-derived 

excited-state properties, laying emphasis particularly on the predictability of B3LYP properties for different 

deep learning models. 

Conformer Set Generation

High throughput calculations are implemented to label the conformers with excited state properties at the 

TDDFT/B3LYP/6-31G(d,p) level. Note that the calculations are performed at the force field optimized 

geometries, no ab initio optimizations are carried out before the TDDFT. The first three singlet and triplet 

excitation energies, the first three singlet oscillator strengths, and the first singlet-triplet splitting are collected. 

Like the original TADF database, the conformer set is partitioned as 8/1/1 for training, validation, and test sets 

as well. 

Deep Learning Methodologies



3

(a)

(b)

(c)

(d)

(e)

Figure S1. The architecture of (a) deep neural network regressor, (b) graph convolutional network regressor, 

(c) recurrent neural network regressor, (d) message passing neural network regressor, (e) SchNet regressor. 
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Deep neural network. For DNN, the extended-connectivity fingerprint (ECFP) is applied to represent the 2-

dimensional topological characteristics of molecules,6 which has been frequently used in the molecular 

machine learning for TADF materials.1,2 We employ the ECFP vector with 2048 bits and define the iteration 

number as 2 during the fingerprint generation. The network topology is set as Input-2048-1024-Output, where 

the input is 2048 denoting the molecular fingerprint, and the output is 1 representing the regressed target. The 

learning rate and the maximal training epoch are set to be 0.001 and 400. We take on an early stop by selecting 

the epoch number for generalization when the minimum of the loss function is reached in the validation set. 

10 single-task DNN models are trained for each excited state property, including the first three singlet and 

triplet excited state energies, the first three singlet oscillator strengths, and the first singlet-triplet splitting. 

Note that similar single-task settings are applied to the models described below. 

Graph convolutional network. GCN is one of the popular graph learning models that can automatically 

extract meaningful features from the molecular graphs without manual design of molecular descriptors. As 

proposed by Kipf et al.,7 GCN works by recursively updating the node feature via aggregating and 

transforming hidden states of its neighbouring nodes. The model is constructed by building 2 convolutional 

layers and 1 hidden layer on top of each node, which can generate a new graph with each node representing 

the local environment. The new node feature vectors are then pooled up in terms of summation, resulting in a 

vector representing the entire molecule. Two additional neural network hidden layers are finally applied on 

the molecular vector space to deliver the property prediction from the network output. The model follows the 

architecture in our previous work8 and slightly differs from the original molecular GCN proposed by 

Duvenaud et al.9 in the aspect of learnable weight deployment, where the convolution parameters are shared 

across all nodes rather than varying for nodes with different degrees. The learning rate is set to 0.001, and a 

batch size of 32 is used. We use an early stop with the maximal training epoch being set to 30. 

Recurrent neural network. For RNN, the molecular SMILES10 (Simplified molecular input line entry 

system) is employed as the model input. As illustrated in Figure S1(c), the model is composed of a gated 

recurrent unit (GRU) section which transforms the SMILES strings into the vector-based hidden states, and a 

DNN section which converts the hidden vector to the regressed target. During the SMILES transformation, 

the character string is first converted to a one-hot layer with a length set to be the maximal number of 

characters within the SMILES training data. The 0/1 digital layer is then linearly transformed into an 
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embedded matrix with a dimension of 64, which is subsequently fed into a bidirectional GRU machine (a 1-

layer bidirectional GRU with 256 hidden dimensions is applied here). The output represented as the last hidden 

state from GRU is then transformed to the regressed target via a 2-layer fully connected neural network with 

hidden dimensions of 512 and 256. We use a batch size of 256 and a learning rate of 0.001, by performing the 

training with an early stop under the maximal epoch number of 100. 

Message passing neural network. MP is a model that can treat the molecule as a computational graph, by 

using bond (as edge) and atom (as node) type features in addition to the interatomic distances.11 The message 

passing operates by extracting information from the neighbouring nodes and edges to update the molecular 

graph, so that each node and edge can represent the local environment. By incorporating the interatomic 

distance features, 3-dimensional information can also be considered which could be important for molecular 

simulations. There are multiple variants of MP models.3,12 In this article, we build the MP neural network 

based on the newly proposed graph neural network force field13 which directly encodes the atomic type and 

interatomic distance matrix for force predictions. We make minor modifications to the model so that the MP 

layer output on the node can be sum up to represent the entire graph. A 2-layer neural network is applied on 

top of the pooled vector to make the regression for excited state property predictions. A cut-off length is preset 

to prescribe the boundary within which the aggregation of neighbouring information can be implemented. 

More details regarding the message passing architecture can be referred to the following section. 

SchNet. SchNet is a frequently used 3-dimensional graph-based model for chemical quantum property 

predictions.14,15 The model encodes a vector of nuclear charges and an interatomic distance matrix, such that 

the input is rotationally and translationally invariant. The atomic feature layer interacts with the continuously 

filtered distance embedding via a series of interaction blocks, which perform feature-wise convolutions for 

information aggregations. The resultant atomic feature layer is then connected to a neural network to regress 

on the atomic contributions of the molecular property. The final property forecasting is done with a pooling 

module (in terms of summation of atomic contributions) to realize the atomic-index mutation invariance 

during the calculation. We follow the SchNet architecture in Lu et al.3 by applying the Deep Graph Library16 

to accelerate the graph learning process. A cut-off range is preset for the distance Gaussian expansion to 

account for the boundary of atomic interactions. 

Message Passing Model
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Inspired by the graph neural network force field (ref 13), we adopt a 3-body-correlation-based MP architecture 

to predict the excited state properties of light emissive molecules. 

The original molecules are first represented as nodes and undirected edges denoting the atom types and 

interatomic distances respectively. The nodes are converted to an embedding layer that is composed of a 

categorical one-hot layer (representing the atomic numbers) and a neural network (which transforms the one-

hot layer to the initial node hidden state ). The edges (interatomic distance matrix in this research) are ℎ0
𝑖

converted to the initial edge embedding  in terms of a Gaussian filtering process (being similar with the ℎ 0
(𝑖,𝑗)

procedure in SchNet), as displayed in equation (1): 

                               (1)ℎ 0
(𝑖,𝑗) = 𝑒

‒ 0.1 × (𝑎𝑡𝑜𝑚_𝑑𝑖𝑠(𝑖,𝑗) ‒ 𝑥𝑐𝑢𝑡𝑜𝑓𝑓)2

where  denotes the distance between atoms i and j,  is an arithmetic sequence from 0 to 𝑎𝑡𝑜𝑚_𝑑𝑖𝑠(𝑖,𝑗) 𝑥𝑐𝑢𝑡𝑜𝑓𝑓

the distance cut-off (as defined to be 5, 10, 15 and 20 Å in this research) with a grid spacing of 0.1 Å.  ℎ 0
(𝑖,𝑗)

essentially gives rise to a Gaussian expansion of the interatomic distances that can improve the optimization 

conditioning and reduce the correlations between filter values. 

In the message passing stage, multiple MP layers are constructed where local messages are passed between 

neighbouring nodes and edges in each layer in order to extract the local information. We define the message 

passing that occurs between the nodes and edges as follows:

                           edge to node:                       (2)𝑓𝑙
𝑣:{ℎ𝑙

𝑖, ℎ
𝑙

(𝑖,𝑗)|𝑗𝜖𝑁𝑖}→ℎ𝑙 + 1
𝑖

                       node to edge:                        (3)𝑓𝑙
𝑒:{ℎ𝑙

𝑖, ℎ
𝑙
𝑗,ℎ

𝑙
(𝑖,𝑗)}→ℎ𝑙 + 1

(𝑖,𝑗)

 and  are the hidden states of node  and edge  in the message passing layer l, respectively. The initial ℎ𝑙
𝑖 ℎ 𝑙

(𝑖,𝑗) 𝑣𝑖 𝑒𝑖𝑗

hidden states for  and  are given by  and , which are the embeddings of nodes and edges.  ℎ𝑙
𝑖 ℎ 𝑙

(𝑖,𝑗) ℎ0
𝑖 ℎ 0

(𝑖,𝑗) 𝑁𝑖

denotes the set of indices of neighbouring nodes connected to node  (where the cut-off radius applies to 𝑣𝑖

define the boundary of neighbours). Message functions  and  are node- and edge- specific neural networks 𝑓𝑙
𝑣 𝑓𝑙

𝑒

that update  and  to  and  respectively. These functions are defined such that after each update ℎ𝑙
𝑖 ℎ 𝑙

(𝑖,𝑗) ℎ𝑙 + 1
𝑖 ℎ𝑙 + 1

(𝑖,𝑗)

(message-passing), embedding  better represents the local atomic environment of atom i and embedding ℎ𝑙
𝑖

 better represents the interatomic interactions between atoms i and j. The updated hidden states are taken ℎ 𝑙
(𝑖,𝑗)

as the input for the next MP layer. In the current implementation of the 3-body-correlation-based MP, we 
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define the functions to be the following: 

𝑓𝑙
𝑣:ℎ𝑙 + 1

𝑖 =  tan ℎ

                     [ ]                     (4)

ℎ𝑙
𝑖 + ∑

𝑗𝜖𝑁𝑖

𝜎(𝑐1 𝑙
𝑖𝑗𝑤

𝑙
1 + 𝑏𝑙

1) ⊙ tan ℎ(𝑐1 𝑙
𝑖𝑗𝑤

𝑙
2 + 𝑏𝑙

2)

𝑓𝑙
𝑒:ℎ𝑙 + 1

(𝑖,𝑗) =  tan ℎ

[ℎ
𝑙

(𝑖,𝑗) + 𝜎(𝑐2 𝑙
𝑖𝑗𝑤

𝑙
3 + 𝑏𝑙

3) ⊙ tan ℎ(𝑐2 𝑙
𝑖𝑗𝑤

𝑙
4 + 𝑏𝑙

4)

                     + ]                    (5)
∑
𝑘𝜖𝑁𝑗

𝜎(𝑐3 𝑙
𝑖𝑗𝑘𝑤𝑙

5 + 𝑏𝑙
5) ⊙ tan ℎ(𝑐3 𝑙

𝑖𝑗𝑘𝑤𝑙
6 + 𝑏𝑙

6)

where  denotes a sigmoid function that is applied element-wise to each entry of the vector and  denotes 𝜎 ⊙

an element-wise multiplication operator.  and  represent the weights and biases of the neural network. 𝑤𝑙 𝑏𝑙

 represents how the interatomic dynamic between atoms i and j impacts the local environment of atom i 𝑐1 𝑙
𝑖𝑗

and is defined as , where  denotes a concatenation operator.  and  represent the 2-𝑐1 𝑙
𝑖𝑗 = ℎ𝑙

𝑖⨁ ℎ 𝑙
(𝑖,𝑗) ⨁ 𝑐2 𝑙

𝑖𝑗 𝑐3 𝑙
𝑖𝑗𝑘

body correlation between atoms i and j and the 3-body correlation between atoms i, j and k, where 

 and . Note that the many-body correlations beyond the 2-body 𝑐2 𝑙
𝑖𝑗 = ℎ𝑙

𝑖 ⊙ ℎ𝑙
𝑗 𝑐3 𝑙

𝑖𝑗𝑘 = ℎ𝑙
𝑖⨁ℎ𝑙

𝑗⨁ℎ𝑙
𝑘⨁ℎ 𝑙

(𝑖,𝑗)⨁ℎ 𝑙
(𝑘,𝑗)

and 3-body contributions can thus be implicitly captured by iteratively passing messages between nodes and 

edges. 

The final updated node hidden states in the MP layer are summed up in the pooling module, to account for the 

entire graph representation of molecules. A graph-level regressor based on the multilayer perceptron is then 

applied on the pooled vectors to predict the excited state properties. Mean squared error is employed as the 

loss function. We use a batch size of 32 and a learning rate of 0.001, by performing the training with an early 

stop under the maximal epoch number of 300. 

Test Set Performances for Energies and Oscillator Strengths

Table S1. Test set performances for the five deep learning models. Note that the statistical estimates are 

averaged over the seven energy targets (including ΔEST) and three oscillator strength targets. For RMSE and 

MAE, the energies are in the unit of eV, while f is dimensionless. 

energies oscillator strengths
test set performance

R2 RMSE MAE R2 RMSE MAE

DNN 0.8295 0.0819 0.0532 0.5531 0.1063 0.0578
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As shown in Table S1, SchNet gives rise to the best fitting quality for the excited-state energies, while the 

performances of RNN and MP are slightly inferior. For the oscillator strengths, DNN performs the best while 

MP the worst. 

Cut-Off Effect of 3-Dimensional Models

(a)

(b)

Figure S2. Test set R2 of MP and SchNet models for excited state properties using different cut-off radii (in 

the unit of angstrom). 

As discussed in previous literature,3 the cut-off used in 3-dimensional models may significantly affect the 

predictive accuracy of excited state properties for organic semiconductors. Particularly for the transition 

dipole, increasing the cut-off can reduce the MAE of transition dipole by more than 20%, as the charge transfer 

GCN 0.8164 0.0868 0.0658 0.4034 0.1340 0.0850

RNN 0.8782 0.0706 0.0497 0.4343 0.1285 0.0695

MP 0.8703 0.0734 0.0544 0.3085 0.1417 0.0795

SchNet 0.8905 0.0654 0.0495 0.4184 0.1296 0.0760
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characteristics of semiconductive materials may require a larger model covering range. As the test samples in 

our research is of essentially D-A structure which can lead to considerable orbital separation, we 

systematically examined the cut-off effect of the 3-dimensional models on the prediction accuracy. 

As displayed in Figure S2, increasing the cut-off does not result in a consistent improvement of the forecasting 

quality for both MP and SchNet models. For MP, a decline of R2 is visualized on S1_f when the cut-off is 

increased, while an opposite trend is observed for S2_f and S3_f. For SchNet, accuracy enhancement is detected 

only for S3_f. Regarding the transition energies, it seems that a larger cut-off would give rise to a diminished 

accuracy for MP, whereas the R2 is largely unaltered with the cut-off for SchNet. By averaging the R2 over all 

targets, the best performance is given by the 5-cut-off model for MP (average R2 of 0.7018) and 20-cut-off 

model for SchNet (average R2 of 0.7489), as illustrated in Figure 2 and Table 1 (within the main text). The 

result demonstrates that the boundary of atomic interactions may not be a critical factor in prescribing the 

predictive accuracy of excited state properties. The finding is similar to the analysis in Unke et al.17, where 

models with a larger cut-off can still fail in predictions due to the complexity of the many-body system which 

is difficult to be resolved by a localized model design. We hereby state that the predictive error of excited state 

properties may not critically depend on the model cut-off, and the neural network locality which can somehow 

define the unremovable interactions should be carefully formulated to enhance the forecasting quality. 
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