Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1. Calculation Methods

In one method, the electron transfer number (n) of the ORR process were calculated by the Koutecky-Levich (K-L) equation:

$$J^{-1} = J_{k}^{-1} + (Bw^{\overline{2}})^{-1}$$

$$B = 0.2 \times n \times F \times Co_{2} \times D_{0_{2}}^{\frac{2}{3}} \times v^{-\frac{1}{6}}$$

where J is the measured current density during ORR, Jk is the kinetic current density, ω is the electrode rotating angular velocity ($\omega = 2\pi N$, N is the linear rotation speed), B is the slope of K-L plots, n represents the electron transfer number, F is the Faraday constant (F = 96485 C mol⁻¹), D₀ is the diffusion coefficient of O₂ in 0.1 M KOH (1.9 × 10-5 cm² s⁻¹), v is the kinetic viscosity (0.01 cm2 s-1), C₀ is the bulk concentration of O₂ (1.2 × 10-3 mol L⁻¹).

In another method, the electron transfer number (n) and peroxide yield were quantified by the RRDE measurements. The ring potential was set constantly at 1.55 V vs. RHE. The peroxide yield $(H_2O_2 \%)$ and electron transfer number (n) were determined by the followed equations

$$n = 4 \times \frac{I_d}{I_d + \frac{I_r}{N}}$$
$$H_2 O_2 \% = \frac{200 \times \frac{i_r}{N}}{\frac{i_d + \frac{i_r}{N}}{i_d + \frac{i_r}{N}}}$$

Where i_d and i_r stand for the disk and ring current, respectively, and N is the current collection efficiency (0.37) of the Pt ring of the RRDE electrode.

2. Test method of zinc-air battery

First, 0.01 g catalyst was suspended in 0.74 mL purified water, 0.2 mL isopropanol, and 60 μ L 5 wt% Nafion solution to produce catalyst ink. Then, the aircathode was fabricated via dropping 100 μ L catalyst ink onto 1 cm⁻² hydrophobic carbon cloth. Thus, the catalyst loading is ~0.001 g cm⁻². Combined with the Zn-foil anode and 6 M KOH/0.2 M (CH₃COO)₂Zn electrolyte, the liquid ZABs can be obtained. Discharge and charge performance of liquid ZAB was test by LSV

technique at a scan rate of 10 mV s⁻¹ on a Chenhua CHI 660E electrochemical work station in ambient atmosphere. The galvanostatic discharge and charge-discharge cycling (10 min charge and 10 min discharge) were recorded by using a LAND testing system at a current density of 10 mA cm⁻² The specific capacity and the energy density were calculated normalized to the mass of the consumed zinc according the following equations:

 $Specific \ capacit = \frac{Current \ \times \ Discharge \ time}{Weight \ of \ comsumed \ Zn}$ $Energy \ density = \frac{Current \ \times \ Discharge \ time \ \times \ Average \ discharge \ voltage}{Weight \ of \ comsumed \ Zn}$

3. Supplementary Figures and Tables

Figure S1. the XRD of (Co,Fe)S₂/CNS and CoFe/CN

Figure S2. XPS survey spectrum of CoFe/CN

Figure S3. Elemental analysis of (Co,Fe)S₂/CNS by xps

Figure S4. K-L plots of (Co,Fe)S₂/CNS at different potentials

Figure S5 Polarization curves of the (a) $(Co,Fe)S_2/CNS$ catalyst, (b) CoFe/CN catalyst, and (c) commercial RuO₂ catalysts before and after 1000 cycles in 0.1 M KOH solution.

Figure S6 (a) LSV curves for the OER of the $(Co,Fe)S_2/CNS$, CoFe/CN, and RuO₂ catalysts in 1 M KOH; (b) The corresponding Tafel plots.

Figure S7 (a-b) (Co,Fe)S₂/CNS catalyst was cured at 600°C, 700°C, 800°C, and 900°C with ORR and OER.

Figure S8 (a-b) Curing time is 1h, 2h and 3h at 800°C, respectively. ORR and OER of $(Co,Fe)S_2/CNS$ catalyst.

Figure S9. An LED display lighted by three Zn-air batteries connected in series.

Table S1. List of the ORR/OER catalytic properties of the $(Co,Fe)S_2/CNS$ and previously reported state-of-the-art catalysts in 0.1 M KOH.

Catalyst	Electrolyte	ORR	ORR	OER	OER	E=E(j=10)	Ref
		E_{onset}	$E_{1/2}/V$	E_{onset}	E(j=10)/	E _{1/2} /V(vs	
		V(vs	(vs	V(vs	V(vs	RHE)	
		RHE)	RHE)	RHE)	RHE)		
(Co,Fe)S ₂ /CNS	0.1 MKOH	0.84	0.74	1.30	1.42	0.68	Our
							work
(Ni,Co)S ₂	0.1 MKOH	0.82	0.71	1.47	1.50	0.79	1
CoFe/N-GCT	0.1 MKOH	0.94	0.70	1.51	1.64	0.88	2
$Co_3FeS_{1.5}(OH)_6$	0.1 MKOH	0.87	0.72	N.A.	1.59	0.87	3
Co-Ni-S@NSP	0.1 MKOH	0.95	0.82	1.57	1.7	0.88	4
Fe@C-	0.1 MKOH	N.A.	0.84	N.A.	1.62	0.84	5
NG/NCNTs							
N-CoS ₂ YSSs	1 M KOH	0.95	0.81	1.50	1.52	0.71	6

Electrocatalysts	Electrolytes	OCP (V)	Power density (mW	Specific capacity $(mAh g^{-1})$	Cyclic stability	Ref
			cm^{-2}	(
(Co,Fe)S ₂ /CNS	6 M KOH+0.2 M Zn ²⁺	1.453 V	115	759.1	360 cycles(120h)	Our work
Co-N,B-CSs	6 M KOH+0.2 M Zn ²⁺	1.49	103	403	40 cycles (15 h)	7
FeCo@MNC	6 M KOH+0.2 M Zn ²⁺	1.41	115	N.A.	144 cycles (24 h)	8
Co ₉ S ₈ /CNT	6 M KOH+0.2 M Zn ²⁺	1.43	197.6	N.A.	576 cycles (96 h)	9
S-GNS/NiCo ₂ S ₄	6 M KOH+0.2 M Zn ²⁺	N.A.	188.6	N.A.	150 cycles (100 h)	10
Co/N-CNSNs	6 M KOH+0.2 M Zn ²⁺	1.471	81.7	638.4	100 cycles (100 h)	11
Co ₃ FeS _{1.5} (OH)	6 M KOH+0.2 M Zn ²⁺	N.A.	113.12	898	108 cycles (36 h)	3
FeCo/FeCoNi@ NCNTs-HF	6 M KOH+0.2 M Zn ²⁺	1.469	156.2	783	180 cycles (120 h)	12
Fe-SAs/NPS-HC	6 M KOH+0.2 M Zn ²⁺	1.45	195.0	N.A.	500 cycles (200,000 s)	13

Table S2. Comparative summary of the energy efficiency of currently available ZABs with our work.

References

- 1. J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao and J. Wang, *Nano-Micro Letters*, 2019, **11**, 2.
- 2. X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li and H. Fu, *Angewandte Chemie International Edition*, 2018, **57**, 16166-16170.
- 3. H.-F. Wang, C. Tang, B. Wang, B.-Q. Li and Q. Zhang, *Advanced Materials*, 2017, **29**, 1702327.
- 4. W. Fang, H. Hu, T. Jiang, G. Li and M. Wu, *Carbon*, 2019, **146**, 476-485.
- 5. Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang and Y. Wang, *Journal of Materials Chemistry A*, 2018, **6**, 516-526.
- 6. X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao and X. W. Lou, *Advanced Science*, 2020, 7, 2001178.
- Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu and S. Mu, *ACS Nano*, 2018, **12**, 1894-1901.
- 8. C. Li, M. Wu and R. Liu, *Applied Catalysis B: Environmental*, 2019, **244**, 150-158.
- 9. H. Li, Z. Guo and X. Wang, *Journal of Materials Chemistry A*, 2017, **5**, 21353-21361.
- W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen and A. Yu, *Advanced Functional Materials*, 2018, 28, 1706675.
- 11. X. Huang, Y. Zhang, H. Shen, W. Li, T. Shen, Z. Ali, T. Tang, S. Guo, Q. Sun and Y. Hou, *ACS Energy Letters*, 2018, **3**, 2914-2920.
- 12. Z. Wang, J. Ang, B. Zhang, Y. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Che, Y. Huang and X. Lu, *Applied Catalysis B: Environmental*, 2019, **254**, 26-36.
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W.-C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang and Y. Li, *Nature Communications*, 2018, 9, 5422.