Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1. Calculation Methods

In one method, the electron transfer number (n) of the ORR process were calculated by the Koutecky-Levich (K-L) equation:

$$
J^{-1} = J_k^{-1} + (Bw^2)^{-1}
$$

$$
B = 0.2 \times n \times F \times Co_2 \times D_{O_2}^{\frac{2}{3}} \times v^{-\frac{1}{6}}
$$

where J is the measured current density during ORR, Jk is the kinetic current density, ω is the electrode rotating angular velocity ($\omega = 2\pi N$, N is the linear rotation speed), B is the slope of K-L plots, n represents the electron transfer number, F is the Faraday constant (F = 96485 C mol⁻¹), D_0 is the diffusion coefficient of O_2 in 0.1 M KOH (1.9 \times 10-5 cm² s⁻¹), v is the kinetic viscosity (0.01 cm2 s-1), C_0 is the bulk concentration of O_2 (1.2 × 10-3 mol L⁻¹).

In another method, the electron transfer number (n) and peroxide yield were quantified by the RRDE measurements. The ring potential was set constantly at 1.55 V vs. RHE. The peroxide yield $(H₂O₂ %)$ and electron transfer number (n) were determined by the followed equations

$$
n = 4 \times \frac{I_d}{I_d + \frac{I_r}{N}}
$$

$$
H_2 O_2\% = \frac{200 \times \frac{i_r}{N}}{i_d + \frac{i_r}{N}}
$$

Where i_d and i_r stand for the disk and ring current, respectively, and N is the current collection efficiency (0.37) of the Pt ring of the RRDE electrode.

2. Test method of zinc-air battery

First, 0.01 g catalyst was suspended in 0.74  mL purified water, 0.2  mL isopropanol, and 60 μL 5  wt% Nafion solution to produce catalyst ink. Then, the aircathode was fabricated via dropping 100  μL catalyst ink onto 1 cm−2 hydrophobic carbon cloth. Thus, the catalyst loading is ~ 0.001 g cm⁻². Combined with the Zn-foil anode and 6 M KOH/0.2 M (CH3COO)2Zn electrolyte, the liquid ZABs can be obtained. Discharge and charge performance of liquid ZAB was test by LSV

technique at a scan rate of 10 mV s^{-1} on a Chenhua CHI 660E electrochemical work station in ambient atmosphere. The galvanostatic discharge and charge-discharge cycling (10 min charge and 10 min discharge) were recorded by using a LAND testing system at a current density of 10 mA cm-2 The specific capacity and the energy density were calculated normalized to the mass of the consumed zinc according the following equations:

 $Specific \, capacity =$ $Current \times Discharge$ time Weight of comsumed Zn $Eneray$ density = Current \times Discharge time \times Average discharge voltage Weight of comsumed Zn

3. Supplementary Figures and Tables

Figure S1. the XRD of (Co,Fe)S₂/CNS and CoFe/CN

Figure S2. XPS survey spectrum of CoFe/CN

Figure S3. Elemental analysis of $(Co, Fe)S_2/CNS$ by xps

Figure S4. K-L plots of $(Co, Fe)S_2/CNS$ at different potentials

Figure S5 Polarization curves of the (a) $(Co, Fe)S_2/CNS$ catalyst, (b) $CoFe/CN$ catalyst, and (c) commercial RuO₂ catalysts before and after 1000 cycles in 0.1 M KOH solution.

Figure S6 (a) LSV curves for the OER of the $(Co,Fe)S_2/CNS$, $CoFe/CN$, and RuO_2 catalysts in 1 M KOH; (b) The corresponding Tafel plots.

Figure S7 (a-b) $(Co, Fe)S₂/CNS$ catalyst was cured at $600^{\circ}C$, $700^{\circ}C$, $800^{\circ}C$, and $900^{\circ}C$ with ORR and OER.

Figure S8 (a-b) Curing time is 1h, 2h and 3h at 800℃, respectively. ORR and OER of (Co,Fe)S₂/CNS catalyst.

Figure S9. An LED display lighted by three Zn–air batteries connected in series.

Table S1. List of the ORR/OER catalytic properties of the $(Co, Fe)S_2/CNS$ and previously reported state-of-the-art catalysts in 0.1 M KOH.

Catalyst	Electrolyte	ORR	ORR	OER	OER	$E=E(j=10)$	Ref
		E_{onset}	$E_{1/2}/V$	E_{onset}	$E_{(i=10)}$ /	$E_{1/2}/V$ (vs	
		V(vs)	(vs)	V(vs)	V(vs)	RHE)	
		RHE)	RHE)	RHE)	RHE)		
$(Co, Fe)S_2/CNS$	0.1 MKOH	0.84	0.74	1.30	1.42	0.68	Our
							work
(Ni,Co)S ₂	0.1 MKOH	0.82	0.71	1.47	1.50	0.79	$\mathbf{1}$
CoFe/N-GCT	0.1 MKOH	0.94	0.70	1.51	1.64	0.88	\overline{c}
$Co3FeS1.5(OH)6$	0.1 MKOH	0.87	0.72	N.A.	1.59	0.87	3
Co-Ni-S@NSP	0.1 MKOH	0.95	0.82	1.57	1.7	0.88	$\overline{4}$
Fe@C-	0.1 MKOH	N.A.	0.84	N.A.	1.62	0.84	5
NG/NCNTs							
$N-CoS2 YSSs$	1 M KOH	0.95	0.81	1.50	1.52	0.71	6

Table S2. Comparative summary of the energy efficiency of currently available ZABs with our work.

References

- 1. J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao and J. Wang, *Nano-Micro Letters*, 2019, **11**, 2.
- 2. X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li and H. Fu, *Angewandte Chemie International Edition*, 2018, **57**, 16166-16170.
- 3. H.-F. Wang, C. Tang, B. Wang, B.-Q. Li and Q. Zhang, *Advanced Materials*, 2017, **29**, 1702327.
- 4. W. Fang, H. Hu, T. Jiang, G. Li and M. Wu, *Carbon*, 2019, **146**, 476-485.
- 5. Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang and Y. Wang, *Journal of Materials Chemistry A*, 2018, **6**, 516-526.
- 6. X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao and X. W. Lou, *Advanced Science*, 2020, **7**, 2001178.
- 7. Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu and S. Mu, *ACS Nano*, 2018, **12**, 1894-1901.
- 8. C. Li, M. Wu and R. Liu, *Applied Catalysis B: Environmental*, 2019, **244**, 150- 158.
- 9. H. Li, Z. Guo and X. Wang, *Journal of Materials Chemistry A*, 2017, **5**, 21353- 21361.
- 10. W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen and A. Yu, *Advanced Functional Materials*, 2018, **28**, 1706675.
- 11. X. Huang, Y. Zhang, H. Shen, W. Li, T. Shen, Z. Ali, T. Tang, S. Guo, Q. Sun and Y. Hou, *ACS Energy Letters*, 2018, **3**, 2914-2920.
- 12. Z. Wang, J. Ang, B. Zhang, Y. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Che, Y. Huang and X. Lu, *Applied Catalysis B: Environmental*, 2019, **254**, 26-36.
- 13. Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W.-C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang and Y. Li, *Nature Communications*, 2018, **9**, 5422.