Electronic Supplementary Information

Producing green hydrogen in an efficient way using a nexus of waste-biomass derived catalyst and costeffective & scalable electrode platform

Kirti^{a,c}†, Amravati S. Singh ^{b,c}†, Kinjal B. Patel^{a,c}, Ashish A. Patil^a, Ankush V. Biradar ^{b,c,*} Divesh N. Srivastava^{a,c} *

^aAnalytical and Environmental Science Division and Centralized Instrument Facility

^b.Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar-364002, Gujarat, India

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, , India

† Both these authors contributed equally

*Corresponding author Tel: +91-278-2567760; EXT 6730

E-mail: dnsrivastava@csmcri.res.in, ankush@csmcri.res.in

Figure S1. Zoom PXRD spectra of synthesized electrocatalyst.

Figure S2. Scanning electron microscopy (SEM) image of Ni@NC-600 (A-C), Ni@NC-700 (D-F)

Figure S3. Scanning electron microscopy (SEM) image (A), Surface elemental mapping (B), EDX spectra of Ni@NC-800(C).

Figure S4. (A) Elemental mapping of the mixture of Ni, C, N and O, (B) electron images (C) Oxygen (D) Carbon, (E) Oxygen, F) Nitrogen. (G) EDAX spectra of Ni@NC-800 (H) Table of elemental content Ni@NC-800.

Figure S5: Raman spectra of NC catalyst.

Figure S6: SEM analysis of **Ni@NC-800** modified PCE (A,B) before, and (C,D) after the HER experiments.

Figure S7: XRD spectra of Ni@NC-800 modified PCE before, and after the HER experiments.

Figure S8. Time vs. current plot obtained from LSV (A) **Ni@NC-800** modified PCE (area = 42 cm²); (B) **Ni@NC-800** modified PCE (area = 0.196 cm²).

Figure S9. Photograph of Laminated Plastic Chip Electrode (area = 0.196 cm^2) for small scale experiment and Plastic chip electrode (area = 42 cm^2) for large scale experiment.

Electrocatalyst	Electrolyte	Electrode	Overpotential(mV	Reference
			vs RHE) at	
			10mAcm ⁻²	
Ni@NC-800	$0.5 \text{ M H}_2\text{SO}_4$	PCE	400	This work
Few-layered	$0.5 \text{ M H}_2\text{SO}_4$	Glassy Carbon	540	1
MoS_2		Electrode		
nanosheets				
ON-CNF	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	Glassy Carbon	490	2
		Electrode		
Ni ₃ S ₂ /MWCNT	1 M KOH	Glassy Carbon	480	3
		Electrode		
Ni ₃ S ₂	$0.5 \text{ M H}_2\text{SO}_4$	Glassy Carbon	832	4
		Electrode		
Ni ₃ S ₂ -Ni	$0.5 \text{ M H}_2\text{SO}_4$	Glassy Carbon	320	4
		Electrode		
Ni@NC	$0.5 \text{ M H}_2\text{SO}_4$	Glassy Carbon	370	5
		Electrode		
Ni(OH)2/TM	1 M KOH	Ti Mesh	537	6

Table S1. Comparison of electrochemical performance with another reportedelectrocatalyst

References

1. B Lai, SC Singh, JK Bindra, CS Saraj, A Shukla, TP Yadav, W Wu, SA McGill, NS Dalal, A Srivastava, C Guo, *Materials Today Chemistry*, 2019, **14**,100207.

2. D F Niu, Y Ding, Z X Ma, M H Wang, Z Liu, B W Zhang, X S Zhang, *Acta Chim. Sinica*, 2015, **73(7)**, 729–734.

3. TW Lin, CJ Liu, CS Dai, Applied Catalysis B: Environmental, 2014, 154, 213-220.

4. B Busupalli, S Battu, SK Haram, BL Prasad, Chemistry Select, 2016, 21, 6708-6712.

5. SA Shah, X Shen, M Xie, G Zhu, Z Ji, H Zhou, K Xu, X Yue, A Yuan, J Zhu, Y Chen, *Small*, 2019,**15(9)**, 1804545.

6. Y Wang, J Wang, T Xie, Q Zhu, D Zeng, R Li, X Zhang, S Liu, *Applied Surface Science*, 2019, **485**, 506-12.