Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Divergent Cyclization of 2-(5-Iodo-1,2,3-triazolyl)benzamides toward Triazole-Fused Lactams and Cyclic Imidates

Yury N. Kotovshchikov,* Stepan S. Tatevosyan, Gennadij V. Latyshev,* Zoya R. Kugusheva, Nikolay V. Lukashev, and Irina P. Beletskaya

Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia. E-mail: kotovshchikov@org.chem.msu.ru, latyshev@org.chem.msu.ru

Table of Contents

General information	S2
Experimental procedures and characterization data for compounds	
Details of X-ray diffraction measurements	
Details of DFT calculations	
UV-vis and fluorescence spectra	
Copies of IR spectra	
Copies of NMR spectra	
References	

General information

NMR spectra were recorded with Bruker Avance 400, Agilent 400MR (¹H 400 MHz, ¹³C 100 MHz), and Bruker Avance 600 (¹H 600 MHz, ¹³C 151 MHz) spectrometers at ambient temperature. Chemical shifts are presented in ppm (δ scale) and referenced to hexamethyldisiloxane (HMDS, $\delta = 0.05$ ppm) or tetramethylsilane (TMS, $\delta = 0$ ppm) in the ¹H NMR spectra and to the solvent signal in the ¹³C NMR spectra. UV–vis spectra were recorded in solutions using a Hitachi U-2900 UV-vis spectrometer in a quartz cuvette (Hellma, 1 = 1 cm). Emission spectra were measured using a Horiba Jobin Yvon Fluoromax-2 spectrometer in a quartz cuvette (Hellma, 1 = 1 cm). IR spectra were recorded with a Thermo Nicolet 200 FT-IR instrument in KBr pellets. IR bands in 2365–2340 cm⁻¹ range belong to atmospheric CO₂. MALDI-TOF spectra were recorded with a Bruker Daltonics UltraFlex instrument in a dithranol matrix using PEG 300, PEG 400 or PEG 600 as the internal standard. ESI mass spectra were obtained from Thermo Scientific LTQ Orbitrap and Sciex TripleTOF 5600+ spectrometers. Elemental analyses were performed with an Elementar Vario MICRO cube apparatus. Column chromatography was carried out on Macherey–Nagel silica gel 60 (0.040–0.063 mm).

Experimental procedures and characterization data for compounds

General scheme for the synthesis of starting compounds

2-Azidobenzoic acids **S1a-f** were prepared from the corresponding commercially available anthranilic acids by the standard diazotization/azidation protocol according to the reported procedures.

1-Iodoalkynes **S3a-i** were prepared from the corresponding terminal acetylenes by a modified literature procedure¹ (treatment with I_2 in the methanol solution in the presence of 3 equiv of MeONa). Iodide **S3j** was prepared using *N*-iodosuccinimide/AgNO₃ halogenation system according to a general literature procedure.²

Synthesis of 2-azido-N-methylbenzamides S2

General procedure 1 (GP1). The mixture of 2-azidobenzoic acid S1 (6.0 mmol, 1 equiv) and $SOCl_2$ (3 mL) was refluxed for 1 h. Then the excess $SOCl_2$ was evaporated *in vacuo* and the residue was dissolved in THF (12 mL). The obtained mixture was cooled in an ice bath and 40% solution of MeNH₂ in water (1.55 mL, 18.0 mmol, 3 equiv) was added dropwise. After stirring at ambient temperature overnight, the mixture was diluted with CH_2Cl_2 (50 mL) and washed with water (60 mL). The organic layer was dried with anhydrous Na_2SO_4 , and the solvents were evaporated *in vacuo*. The crude product was purified by column chromatography.

2-Azido-N-methylbenzamide (S2a)

Prepared from **S1a** (2.445 g, 15.0 mmol) according to **GP1**; eluent: CH₂Cl₂– MeOH = 50:1. Yield 2.571 g (97%). White solid; mp 97–98 °C (lit.³ 95–97 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 7.9, 1.7 Hz, 1H), 7.55–7.40 (m, 2H),

7.23–7.12 (m, 2H), 2.98 (d, J = 4.8 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.2 (C_{quat}), 136.7 (C_{quat}), 132.1, 132.0, 125.04, 124.98 (C_{quat}), 118.3, 26.7.

2-Azido-5-bromo-N-methylbenzamide (S2b)

Prepared from **S1b** (363 mg, 1.5 mmol) according to **GP1**; eluent: hexanes– EtOAc = 2:1. Yield 298 mg (78%). Beige solid; mp 130–132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 2.4 Hz, 1H), 7.58 (dd, J = 8.5, 2.4

Hz, 1H), 7.48 (br s, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 3.01 (d, *J* = 4.8 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8 (C_{quat}), 135.9 (C_{quat}), 134.9 (2C), 126.4 (C_{quat}), 120.0, 118.3 (C_{quat}), 26.9.

HRMS (MALDI-TOF) calcd for $C_8H_8^{81}BrN_2O [M-N_2+H]^+ 228.9794$; found 228.9795.

2-Azido-5-iodo-N-methylbenzamide (S2c)

Prepared from **S1c** (578 mg, 2.0 mmol) according to **GP1**; eluent: hexanes– EtOAc = 3:1 and 2:1. Yield 510 mg (84%). Beige solid; mp 106–108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.2 Hz, 1H), 7.78 (dd, J = 8.4, 2.2 Hz, 1H), 7.41 (br s, 1H), 6.95 (d, J = 8.4 Hz, 1H), 3.02 (d, J = 4.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7 (C_{quat}), 140.8 (2C), 136.7 (C_{quat}), 126.5 (C_{quat}), 120.2, 88.6 (C_{quat}), 26.9.

HRMS (MALDI-TOF) calcd for $C_8H_8IN_2O [M-N_2+H]^+ 274.9676$; found 274.9680.

2-Azido-4-methoxy-N-methylbenzamide (S2d)

Prepared from **S1d** (57.9 mg, 0.3 mmol) according to **GP1**; eluent: CH₂Cl₂– EtOAc = 1:1. Yield 56.1 mg (91%). Beige solid; mp 91–93 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 1H), 7.48 (br s, 1H), 6.77

(dd, J = 8.8, 2.4 Hz, 1H), 6.66 (d, J = 2.4 Hz, 1H), 3.87 (s, 3H), 3.01 (d, J =

4.8 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.9 (C_{quat}), 162.4 (C_{quat}), 138.1 (C_{quat}), 133.9, 117.6 (C_{quat}), 110.2, 104.0, 55.5, 26.6.

HRMS (MALDI-TOF) calcd for $C_9H_{11}N_4O_2$ [M+H]⁺ 207.0877; found 207.0874.

2-Azido-N,6-dimethylbenzamide (S2e)

Prepared from S1e (200 mg, 1.13 mmol) according to GP1; eluent: hexanes– EtOAc = 1:1. Yield 196 mg (91%). Pale yellow solid; mp 153–155 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 1H), 7.01–6.95 (m, 2H), 5.86 (br s, 1H),

¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 1H), 7.01–6.95 (m, 2H), 5.86 (br s, 1H), 2.99 (d, J = 4.9 Hz, 3H), 2.30 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.9 (C_{quat}), 137.2 (C_{quat}), 136.7 (C_{quat}), 129.9, 129.2 (C_{quat}), 126.6, 115.5, 26.5, 19.0.

HRMS (MALDI-TOF) calcd for $C_9H_{11}N_4O [M+H]^+$ 191.0927; found 191.0929.

2-Azido-N,3-dimethylbenzamide (S2f)

Prepared from S1f (354 mg, 2.0 mmol) according to GP1; eluent: hexanes-EtOAc = 1:1. Yield 323 mg (85%). Light brown solid; mp 73–75 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (m, 1H), 7.24 (m, 1H), 7.11 (m, 1H), 6.81 (br s, 1H), 3.01 (d, *J* = 4.8 Hz, 3H), 2.37 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.1 (C_{quat}), 135.2 (C_{quat}), 133.3, 132.6 (C_{quat}), 129.2 (C_{quat}), 127.7, 125.5, 26.8, 18.1.

HRMS (MALDI-TOF) calcd for $C_9H_{11}N_2O [M-N_2+H]^+$ 163.0866; found 163.0863.

General procedure 2 (GP2). 2-Azido-*N*-methylbenzamide S2 (1.5 mmol, 1 equiv), 1iodoalkyne S3 (1.73 mmol, 1.15 equiv), CuI (14.3 mg, 0.075 mmol, 5 mol %), and tris[(1-*tert*butyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (TTTA) (32.2 mg, 0.075 mmol, 5 mol %) were mixed under an Ar atmosphere in THF (5 mL). The reaction mixture was stirred at 50 °C in a dry block overnight or for several days (TLC control), then diluted with CH_2Cl_2 (50 mL), washed with EDTA solution (50 mL) and water (50 mL). The organic layer was dried with anhydrous Na₂SO₄, and the solvents were evaporated *in vacuo*. The residue was purified by column chromatography.

General procedure 3 (GP3). Synthesis was performed as described for GP2 with the catalytic system comprising CuI (5 mol %), Cu powder (10 mol %), and TTTA (5 mol %).

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1a)

Prepared from azide **S2a** (528.6 mg, 3.0 mmol) and iodoalkyne **S3a** (469 μ L, 3.45 mmol) according to **GP2** at room temperature; eluent: CH₂Cl₂-EtOAc = 4:1. Yield 1.116 g (97%). Light brown solid; mp 124–125 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (m, 1H), 7.68–7.60 (m, 2H), 7.34 (m, 1H), 5.80 (m, 1H), 2.75 (m, 2H), 2.72 (d, *J* = 4.9 Hz, 3H), 1.74 (m, 2H), 1.41 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8 (C_{quat}), 152.5 (C_{quat}), 134.5 (C_{quat}), 133.9 (C_{quat}), 131.03, 130.97, 129.8, 128.3, 82.5 (C_{quat}), 31.0, 26.8, 25.7, 22.1, 13.8.

HRMS (MALDI-TOF) calcd for $C_{14}H_{18}IN_4O [M+H]^+$ 385.0520; found 385.0523.

5-Bromo-2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1b)

Prepared from azide **S2b** (204.1 mg, 0.8 mmol) and iodoalkyne **S3a** (119 μ L, 0.88 mmol, 1.1 equiv) according to **GP3**; eluent: hexanes–EtOAc = 2:1. Yield 165 mg (45%). White solid; mp 155–157 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 2.2 Hz, 1H), 7.74 (dd, J = 8.4, 2.2 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 6.03 (m, 1H), 2.74 (m, 2H), 2.72 (d, J = 4.8 Hz, 3H), 1.73 (m, 2H), 1.40 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.4 (C_{quat}), 152.8 (C_{quat}), 136.0 (C_{quat}), 134.1, 132.9, 132.8 (C_{quat}), 129.8, 125.2 (C_{quat}), 82.5 (C_{quat}), 31.0, 26.9, 25.7, 22.1, 13.8.

HRMS (MALDI-TOF) calcd for $C_{14}H_{17}BrIN_4O [M+H]^+ 462.9625$; found 462.9623.

(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-5-iodo-*N*-methylbenzamide (1c)

Prepared from azide S2c (271.9 mg, 0.9 mmol) and iodoalkyne S3a (134 μ L, 0.99 mmol, 1.1 equiv) according to GP3; eluent: hexanes–EtOAc = 2:1. Yield 262 mg (57%). Beige solid; mp 152–155 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 2.0 Hz, 1H), 7.94 (dd, J = 8.3, 2.0 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 5.98 (m, 1H), 2.73 (m, 2H), 2.71 (d, J = 4.9 Hz, 3H), 1.73 (m, 2H), 1.40 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.3 (C_{quat}), 152.8 (C_{quat}), 140.1, 138.8, 135.9 (C_{quat}), 133.5 (C_{quat}), 129.8, 96.9 (C_{quat}), 82.4 (C_{quat}), 31.0, 26.9, 25.7, 22.1, 13.8.

HRMS (MALDI-TOF) calcd for $C_{14}H_{17}I_2N_4O [M+H]^+ 510.9486$; found 510.9485.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-4-methoxy-*N*-methylbenzamide (1d)

Prepared from azide S2d (201.1 mg, 0.975 mmol) and iodoalkyne S3a (146 μ L, 1.073 mmol, 1.1 equiv) according to GP2 at room temperature; eluent: hexanes–EtOAc = 1:1. Yield 342 mg (85%). Beige solid; mp 129–131 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.7 Hz, 1H), 7.12 (dd, J = 8.7, 2.5 Hz, 1H), 6.80 (d, J = 2.5 Hz, 1H), 5.72 (m, 1H), 3.88 (s, 3H), 2.74 (m, 2H), 2.68 (d, J = 4.8 Hz, 3H), 1.74 (m, 2H), 1.41 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6 (C_{quat}), 161.3 (C_{quat}), 152.6 (C_{quat}), 135.1 (C_{quat}), 131.5, 126.4 (C_{quat}), 116.5, 113.6, 82.6 (C_{quat}), 55.8, 31.0, 26.8, 25.7, 22.1, 13.7.

HRMS (MALDI-TOF) calcd for $C_{15}H_{20}IN_4O_2$ [M+H]⁺ 415.0625; found 415.0626.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,6-dimethylbenzamide (1e)

Prepared from azide **S2e** (128.3 mg, 0.675 mmol) and iodoalkyne **S3a** (101 μ L, 0.743 mmol, 1.1 equiv) according to **GP2** at room temperature; eluent: hexanes–EtOAc = 1:1. Yield 198 mg (74%). Yellow solid; mp 142–144 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.49–7.42 (m, 2H), 7.15 (m, 1H), 5.73 (m, 1H), 2.72 (m, 2H), 2.69 (d, J = 4.9 Hz, 3H), 2.47 (s, 3H), 1.73 (m, 2H), 1.41 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.0 (C_{quat}), 152.1 (C_{quat}), 137.7 (C_{quat}), 135.7 (C_{quat}), 133.8 (C_{quat}), 132.7, 129.4, 125.3, 82.1 (C_{quat}), 31.0, 26.3, 25.7, 22.2, 19.5, 13.8.

HRMS (MALDI-TOF) calcd for $C_{15}H_{20}IN_4O [M+H]^+$ 399.0676; found 399.0679.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,3-dimethylbenzamide (1f)

Prepared from azide **S2f** (190.2 mg, 1.0 mmol) and iodoalkyne **S3a** (149 μ L, 1.1 mmol, 1.1 equiv) according to **GP3**; eluent: hexanes– EtOAc = 1:1. Yield 200 mg (50%). Pale yellow solid; mp 142–144 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.6, 1.5 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46 (m, 1H), 5.83 (m, 1H), 2.76 (m, 2H), 2.67 (d, J = 4.9 Hz, 3H), 1.98 (s, 3H), 1.75 (m, 2H), 1.39 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.1 (C_{quat}), 152.6 (C_{quat}), 136.9 (C_{quat}), 135.3 (C_{quat}), 132.8 (C_{quat}), 132.7, 130.9, 127.1, 82.9 (C_{quat}), 31.0, 26.7, 25.7, 22.1, 17.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{15}H_{20}IN_4O [M+H]^+$ 399.0676; found 399.0669.

2-(4-tert-Butyl-5-iodo-1H-1,2,3-triazol-1-yl)-N-methylbenzamide (1g)

Prepared from azide S2a (176.2 mg, 1.0 mmol) and iodoalkyne S3b (229 mg, 1.1 mmol, 1.1 equiv) according to GP2 at room temperature; eluent: hexanes–EtOAc = 1:1. Yield 265 mg (69%). White solid; mp 161–163 °C.

 $^{\prime}$ ¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 7.76 (m, 1H), 7.70–7.64 (m, 2H), 7.41 (m, 1H), 2.72 (s, 3H), 1.53 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 166.5 (C_{quat}), 156.5 (C_{quat}), 134.1 (C_{quat}), 134.0 (C_{quat}), 130.6, 130.4, 128.5, 128.4, 78.6 (C_{quat}), 31.3 (C_{quat}), 28.9 (3C), 25.8.

HRMS (MALDI-TOF) calcd for $C_{14}H_{18}IN_4O [M+H]^+$ 385.0520; found 385.0517.

2-(5-Iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1h)

Prepared from azide S2a (704.8 mg, 4.0 mmol) and iodoalkyne S3e (1.049 g, 4.6 mmol) according to GP2; eluent: CH_2Cl_2 -MeOH = 20:1. Yield 1.483 g (92%). Pale yellow solid; mp 170–171 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.06–8.02 (m, 2H), 7.88 (m, 1H), 7.71– 7.64 (m, 2H), 7.54–7.48 (m, 2H), 7.47–7.39 (m, 2H), 5.86 (m, 1H), 2.76

(d, *J* = 4.9 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8 (C_{quat}), 149.9 (C_{quat}), 134.7 (C_{quat}), 133.9 (C_{quat}), 131.1, 131.0, 129.7 (C_{quat}), 129.6, 128.8, 128.7, 128.5 (2C), 127.4 (2C), 80.7 (C_{quat}), 26.8.

HRMS (MALDI-TOF) calcd for $C_{16}H_{14}IN_4O [M+H]^+ 405.0207$; found 405.0208.

2-{5-Iodo-4-[2-(trifluoromethyl)phenyl]-1H-1,2,3-triazol-1-yl}-N-methylbenzamide (1i)

Prepared from azide S2a (176.2 mg, 1.0 mmol) and iodoalkyne S3f (326 mg, 1.1 mmol, 1.1 equiv) according to GP2 at room temperature; eluent: hexanes–CH₂Cl₂–EtOAc = 2:2:1. Yield 392 mg (83%). Beige solid; mp 184–186 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 7.86 (m, 1H), 7.81 (m, 1H), 7.74–7.63 (m, 4H), 7.52 (m, 1H), 7.48 (m, 1H), 2.76 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 166.4 (C_{quat}), 149.7 (C_{quat}), 134.2 (C_{quat}), 133.6 (C_{quat}), 132.7, 131.5, 130.9 (2C), 129.8 (q, $J_{CF} = 30.7$ Hz, C_{quat}), 129.5, 129.0, 128.23, 128.16 (q, $J_{CF} = 1.9$ Hz, C_{quat}), 126.2 (q, $J_{CF} = 5.1$ Hz), 123.4 (q, $J_{CF} = 274$ Hz, CF₃), 85.0 (C_{quat}), 26.2. HRMS (MALDI-TOF) calcd for C₁₇H₁₃F₃IN₄O [M+H]⁺ 473.0081; found 473.0083.

2-[4-(1-Hydroxy-1-methylethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1j)

Prepared from azide **S2a** (176.2 mg, 1.0 mmol) and iodoalkyne **S3c** (231 mg, 1.1 mmol, 1.1 equiv) according to **GP2** at room temperature; eluent: $CH_2Ch_2-MeOH = 10:1$. Yield 370 mg (96%). Beige solid; mp 142–144 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 7.75 (m, 1H), 7.71–7.61 (m, 3H), 7.43 (m, 1H), 2.754 (d, J = 4.0 Hz, 3H, CH₃NH), 2.749 (s, 3H, CH₃ND), 1.74 (s, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 166.7 and 166.6 [C(O)NH/D], 155.2 (br, C_{quat}), 134.3 (C_{quat}), 133.7 (C_{quat}), 130.8, 130.5, 128.5, 128.3, 79.4 (br, C_{quat}), 68.2 (C_{quat}), 29.0 (2C), 26.1 and 26.0 (CH₃NH/D).

HRMS (MALDI-TOF) calcd for $C_{13}H_{16}IN_4O_2$ [M+H]⁺ 387.0312; found 387.0314.

2-[4-(2-Hydroxyethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1k)

Prepared from azide S2a (176.2 mg, 1.0 mmol) and iodoalkyne S3d (215.6 mg, 1.1 mmol, 1.1 equiv) according to GP2 at room temperature; due to a low solubility the precipitated product was isolated by filtration, washed with CH_2Cl_2 , and dried *in vacuo*. Yield

329.0 mg (88%). White solid; mp 161-163 °C.

ОH

¹H NMR (400 MHz, DMSO- d_6) δ 8.37 (br q, J = 4.6 Hz, 1H), 7.73–7.64 (m, 3H), 7.45 (m, 1H), 4.78 (br t, J = 5.3 Hz, 1H), 3.67 (br td, J = 7.4, 5.3 Hz, 2H), 2.78 (t, J = 7.4 Hz, 2H), 2.59 (d, J = 4.6 Hz, 3H).

¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 165.5 (C_{quat}), 147.9 (C_{quat}), 134.8 (C_{quat}), 134.3 (C_{quat}), 130.6, 130.3, 128.6, 128.5, 85.9 (C_{quat}), 60.1, 29.9, 26.1.

HRMS (MALDI-TOF) calcd for $C_{12}H_{14}IN_4O_2$ [M+H]⁺ 373.0156; found 373.0160.

2-[4-(4-tert-Butylphenyl)-5-iodo-1H-1,2,3-triazol-1-yl]-N-methylbenzamide (11)

Prepared from azide S2a (176.2 mg, 1.0 mmol) and iodoalkyne S3g (312.5 mg, 1.1 mmol, 1.1 equiv) according to GP2 at room temperature; eluent: hexanes-CH₂Cl₂-EtOAc = 1:1:2. Yield 435 mg (94%). Beige solid; mp 180–182 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 7.95–7.89 (m, 2H), 7.77 (m, 1H), 7.73–7.66 (m, 2H), 7.56–7.50 (m, 2H), 7.48 (m, 1H), 2.76 (s, 3H), 1.38 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 166.6 (C_{quat}), 151.4 (C_{quat}), 149.4 (C_{quat}), 134.1 (C_{quat}), 133.8 (C_{quat}), 130.6, 130.4, 128.4, 128.3, 126.7 (2C), 126.4 (C_{quat}), 125.0 (2C), 80.6 (C_{quat}), 34.1 (C_{quat}), 30.5 (3C), 25.8.

HRMS (MALDI-TOF) calcd for $C_{20}H_{22}IN_4O [M+H]^+ 461.0833$; found 461.0832.

2-[5-Iodo-4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-N-methylbenzamide (1m)

Prepared from azide S2a (176.2 mg, 1.0 mmol) and iodoalkyne S3h (284 mg, 1.1 mmol, 1.1 equiv) according to GP2 at room temperature; eluent: hexanes–EtOAc = 1:1. Yield 390 mg (90%). Beige solid; mp 171–173 °C.

OMe ¹H NMR (400 MHz, CDCl₃–DMSO- d_6) δ 8.23 (br s, 1H), 7.99– 7.93 (m, 2H), 7.76 (m, 1H), 7.71–7.62 (m, 2H), 7.46 (m, 1H), 7.05–6.98 (m, 2H), 3.85 (s, 3H), 2.70 (d, J = 4.5 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–DMSO- d_6) δ 164.3 (C_{quat}), 157.9 (C_{quat}), 146.9 (C_{quat}), 133.4 (C_{quat}), 133.1 (C_{quat}), 129.0, 128.8, 127.3 (2C), 126.9 (2C), 121.3 (C_{quat}), 112.3 (2C), 80.4 (C_{quat}), 53.7, 24.8.

HRMS (MALDI-TOF) calcd for $C_{17}H_{16}IN_4O_2$ [M+H]⁺ 435.0312; found 435.0308.

Methyl 3-(5-iodo-1-{2-[(methylamino)carbonyl]phenyl}-1*H*-1,2,3-triazol-4-yl)benzoate (1n)

Prepared from azide S2a (123.3 mg, 0.7 mmol) and iodoalkyne S3i (230.3 mg, 0.105 mmol, 1.15 equiv) according to GP2; eluent: CH_2Cl_2 -MeOH = 30:1. Yield 317.7 mg (98%). White solid; mp 147–149 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.75 (t, J = 1.8 Hz, 1H), 8.25

(ddd, J = 7.8, 1.8, 1.2 Hz, 1H), 8.10 (ddd, J = 7.8, 1.8, 1.2 Hz, 1H), 7.83 (m, 1H), 7.69–7.63 (m, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.40 (m, 1H), 6.09 (br q, J = 4.9 Hz, 1H), 3.96 (s, 3H), 2.77 (d, J = 4.9 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.7 (C_{quat}), 165.8 (C_{quat}), 149.0 (C_{quat}), 134.7 (C_{quat}), 133.9 (C_{quat}), 131.7, 131.2, 131.1, 130.5 (C_{quat}), 130.1 (C_{quat}), 129.8, 129.4, 128.7 (2C), 128.4, 81.1 (C_{quat}), 52.3, 26.9.

HRMS (MALDI-TOF) calcd for $C_{18}H_{16}IN_4O_3$ [M+H]⁺ 463.0262; found 463.0254.

2-[4-(4-Acetylphenyl)-5-iodo-1H-1,2,3-triazol-1-yl]-N-methylbenzamide (10)

Prepared from azide S2a (123.3 mg, 0.7 mmol) and iodoalkyne S3j (217.4 mg, 0.105 mmol, 1.15 equiv) according to GP2; eluent: hexanes-EtOAc = 1:2. Yield 215.1 mg (69%). Light beige solid; mp 170–173 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.21–8.16 (m, 2H), 8.10–8.06 (m, 2H), 7.80 (m, 1H), 7.70–7.63 (m, 2H), 7.41 (m, 1H), 6.39 (br q, J =

4.5 Hz, 1H), 2.76 (d, J = 4.5 Hz, 3H, CH₃NH), 2.75 (s, 3H, CH₃ND), 2.66 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.8 (C_{quat}), 166.0 and 165.9 [C(O)NH/D], 148.6 (C_{quat}), 136.7 (C_{quat}), 134.63 and 134.59 [C_{Ar}C(O)NH/D], 134.3 (C_{quat}), 133.9 (C_{quat}), 131.2, 131.0, 129.2, 128.7, 128.6 (2C), 127.3 (2C), 81.7 (C_{quat}), 26.8 and 26.64 (CH₃NH/D), 26.62. HRMS (MALDI-TOF) calcd for C₁₈H₁₆IN₄O₂ [M+H]⁺ 447.0312; found 447.0309.

Scheme for the synthesis of 2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzoic acid⁴ (S4)

Synthesis of 2-(4-butyl-5-iodo-1H-1,2,3-triazol-1-yl)benzamides 1

General procedure 4 (GP4). The suspension of 2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzoic acid S4 (222.7 mg, 0.6 mmol, 1 equiv) in THF (4 mL) was cooled in an ice bath. Then isobutyl

chloroformate (116.7 μ L, 0.9 mmol, 1.5 equiv) and Et₃N (167.3 μ L, 1.2 mmol, 2 equiv) were added to the reaction mixture. After stirring for 40 min, the corresponding primary amine (1.2 mmol, 2 equiv) was added and the stirring was continued at ambient temperature. Upon completion of the reaction, the mixture was diluted with CH₂Cl₂ (30 mL) and washed with water (30 mL). The organic layer was dried with anhydrous Na₂SO₄, and the solvents were evaporated *in vacuo*. The crude product was purified by column chromatography.

General procedure 5 (GP5). 2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzoic acid S4 (222.7 mg, 0.6 mmol, 1 equiv), 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-phosphate (HBTU) (273.1 mg, 0.72 mmol, 1.2 equiv), Et₃N (167.3 μ L, 1.2 mmol, 2 equiv), and the corresponding primary amine (0.72 mmol, 1.2 equiv) were mixed under an Ar atmosphere in DMF (6 mL). After stirring at ambient temperature overnight, the solvent was evaporated *in vacuo*. The obtained residue was dissolved in CH₂Cl₂ (30 mL) and washed with water (4×30 mL). The organic layer was dried with anhydrous Na₂SO₄, and the solvent was evaporated *in vacuo*. The crude product was purified by column chromatography.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide (1p)

Prepared from carboxylic acid S4 (259.8 mg, 0.7 mmol) and 25% aqueous ammonia (210 μ L, 0.28 mmol, 4 equiv) according to GP4; eluent: CH₂Cl₂–MeOH = 20:1. Yield 236.9 mg (91%). White solid; mp 114–116 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (m, 1H), 7.68–7.61 (m, 2H), 7.32 (m, 1H), 5.77 (br s, 1H), 5.70 (br s, 1H), 2.73 (m, 2H), 1.73 (m, 2H), 1.40 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9 (C_{quat}), 152.7 (C_{quat}), 134.1 (C_{quat}), 133.5 (C_{quat}), 131.6, 131.0, 130.1, 128.5, 82.6 (C_{quat}), 31.0, 25.8, 22.2, 13.8.

Anal. calcd for C₁₃H₁₅IN₄O: C, 42.18; H, 4.08; N, 15.13; found C, 42.44; H, 4.22; N, 14.88.

HRMS (MALDI-TOF) calcd for $C_{13}H_{16}IN_4O [M+H]^+ 371.0363$; found 371.0362.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methylphenyl)benzamide (1q)

Prepared from carboxylic acid S4 (259.8 mg, 0.7 mmol) and p-toluidine (90.0 mg, 0.84 mmol, 1.2 equiv) according to GP5; eluent: hexanes-EtOAc = 2:1. Yield 291.8 mg (91%). White solid; mp 148–149 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (m, 1H), 7.69–7.61 (m, 2H), 7.55 (br s, 1H), 7.35 (m, 1H), 7.25–7.19 (m, 2H), 7.05–7.00 (m, 2H), 2.66

(m, 2H), 2.26 (s, 3H), 1.59 (m, 2H), 1.26 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.8 (C_{quat}), 153.1 (C_{quat}), 134.8 (C_{quat}), 134.7 (C_{quat}), 134.4 (C_{quat}), 133.7 (C_{quat}), 131.5, 131.3, 130.6, 129.4 (2C), 128.5, 119.9 (2C), 82.8 (C_{quat}), 31.0, 25.8, 22.1, 20.8, 13.7.

Anal. calcd for $C_{20}H_{21}IN_4O$: C, 52.19; H, 4.60; N, 12.17; found C, 52.26; H, 4.86; N, 11.89. HRMS (MALDI-TOF) calcd for $C_{20}H_{22}IN_4O$ [M+H]⁺ 461.0833; found 461.0835.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methoxyphenyl)benzamide (1r)

Prepared from carboxylic acid S4 (259.8 mg, 0.7 mmol) and *p*-anisidine (103.4 mg, 0.84 mmol, 1.2 equiv) according to GP5; eluent: CH_2Cl_2 -MeOH = 20:1. Yield 311 mg (93%). Beige solid; mp 123-125 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (m, 1H), 7.72–7.64 (m, 2H), 7.51 (br s, 1H), 7.38 (m, 1H), 7.29–7.24 (m, 2H), 6.81–6.76 (m, 2H), 3.76

(s, 3H), 2.69 (m, 2H), 1.62 (m, 2H), 1.29 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9 (C_{quat}), 156.4 (C_{quat}), 152.7 (C_{quat}), 134.6 (C_{quat}), 133.7 (C_{quat}), 131.2, 130.9, 130.4 (C_{quat}), 130.1, 128.3, 121.7 (2C), 113.8 (2C), 82.9 (C_{quat}), 55.3, 30.9, 25.7, 22.0, 13.7.

HRMS (MALDI-TOF) calcd for $C_{20}H_{22}IN_4O_2$ [M+H]⁺ 477.0782; found 477.0778.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclopropylbenzamide (1s)

Prepared from carboxylic acid S4 (222.7 mg, 0.6 mmol) and cyclopropylamine (49.9 μ L, 0.72 mmol, 1.2 equiv) according to GP5; eluent: hexanes-CH₂Cl₂-EtOAc = 1:1:2. Yield 204 mg (83%). White solid; mp 133-135 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.86 (m, 1H), 7.63 (m, 1H), 7.60 (m, 1H), 7.29 (m, 1H), 5.82 (br s, 1H), 2.72 (m, 2H), 2.61 (ttd, J = 7.1, 3.8, 3.2 Hz, 1H), 1.73 (m, 2H), 1.43 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.70–0.61 (m, 2H), 0.24–0.16 (m, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.4 (C_{quat}), 152.6 (C_{quat}), 134.5 (C_{quat}), 133.9 (C_{quat}), 131.2, 131.1, 130.1, 128.2, 82.6 (C_{quat}), 31.0, 25.8, 22.7, 22.3, 13.8, 6.5 (2C).

HRMS (MALDI-TOF) calcd for $C_{16}H_{20}IN_4O [M+H]^+ 411.0676$; found 411.0675.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclohexylbenzamide (1t)

Prepared from carboxylic acid **S4** (222.7 mg, 0.6 mmol) and cyclohexylamine (136.8 μ L, 1.2 mmol, 2 equiv) according to **GP4**; eluent: hexanes–EtOAc = 2:1. Yield 254 mg (94%). White solid; mp 96–98 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (m, 1H), 7.64 (m, 1H), 7.60 (m,

1H), 7.29 (m, 1H), 5.52 (br d, J = 7.9 Hz, 1H), 3.69 (tdt, J = 10.7, 7.9, 4.0 Hz, 1H), 2.73 (m, 2H), 1.78–1.64 (m, 4H), 1.63–1.50 (m, 2H), 1.44 (m, 2H), 1.33–1.20 (m, 3H), 1.07 (m, 1H), 0.97 (t, J = 7.4 Hz, 3H), 0.92–0.81 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.0 (C_{quat}), 152.6 (C_{quat}), 135.0 (C_{quat}), 133.7 (C_{quat}), 131.1, 131.0, 130.1, 128.3, 82.7 (C_{quat}), 48.5, 32.4 (2C), 31.1, 25.8, 25.2, 24.6 (2C), 22.3, 13.8. HRMS (MALDI-TOF) calcd for C₁₉H₂₆IN₄O [M+H]⁺ 453.1146; found 453.1141.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[(1*R*)-1-phenylethyl]benzamide (1u)

Prepared from carboxylic acid **S4** (276.3 mg, 0.744 mmol) and (*R*)-1-phenylethylamine (116 μ L, 0.893 mmol, 1.2 equiv) according to **GP4**; eluent: hexanes–EtOAc = 1:1. Yield 335.8 mg (95%). White solid; mp 85–87 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.88 (m, 1H), 7.62 (m, 1H), 7.60 (m, 1H), 7.30–7.26 (m, 3H), 7.22 (m, 1H), 7.15–7.12 (m, 2H), 5.99 (br d, *J* = 7.6 Hz, 1H), 5.03 (dq, *J* = 7.6, 6.9 Hz, 1H), 2.71–2.62 (m, 2H), 1.71 (m, 2H), 1.43 (m, 2H), 1.27 (d, *J* = 6.9 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.0 (C_{quat}), 152.7 (C_{quat}), 142.3 (C_{quat}), 134.6 (C_{quat}), 133.8 (C_{quat}), 131.2, 131.1, 130.3, 128.6 (2C), 128.4, 127.4, 126.1 (2C), 82.6 (C_{quat}), 49.4, 31.0, 25.9, 22.4, 21.4, 13.8.

HRMS (MALDI-TOF) calcd for $C_{21}H_{24}IN_4O [M+H]^+ 475.0989$; found 475.0987.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzohydrazide (1v)

Prepared from carboxylic acid S4 (111.4 mg, 0.3 mmol) and hydrazine hydrate (67.4 μ L, 1.5 mmol, 5 equiv) according to GP4; eluent: CH₂Cl₂-MeOH = 20:1. Yield 89.0 mg (77%). Pale yellow solid; mp 94–96 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 7.72 (m, 1H), 7.66–7.58 (m, 2H), 7.36 (m, 1H), 3.16 (br s, 3H), 2.71 (m, 2H), 1.72 (m, 2H), 1.40 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 166.2 (C_{quat}), 152.1 (C_{quat}), 134.4 (C_{quat}), 132.3 (C_{quat}), 131.2, 130.7, 129.1, 128.4, 82.2 (C_{quat}), 30.8, 25.6, 22.1, 13.6.

HRMS (MALDI-TOF) calcd for $C_{13}H_{16}IN_4O [M-NH_3+H]^+ 371.0363$; found 371.0358.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(2-furylmethyl)benzamide (1w)

Prepared from carboxylic acid S4 (297 mg, 0.8 mmol) and (2-furylmethyl)amine (144.3 μ L, 1.6 mmol) according to GP4; eluent: hexanes–EtOAc = 2:1. Yield 291.3 mg (81%). Beige solid; mp 203–205 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (m, 1H), 7.63–7.56 (m, 2H), 7.32–7.26 (m, 2H), 6.25 (dd, J = 3.2, 1.9 Hz, 1H), 6.14 (br t, J = 5.6 Hz, 1H), 6.10 (m, 1H), 4.31 (d, J = 5.6 Hz, 2H), 2.65 (m, 2H), 1.68 (m, 2H), 1.39 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.8 (C_{quat}), 152.4 (C_{quat}), 150.3 (C_{quat}), 142.1, 134.0 (C_{quat}), 133.9 (C_{quat}), 131.2, 130.9, 129.9, 128.5, 110.3, 107.5, 82.4 (C_{quat}), 36.8, 30.9, 25.8, 22.2, 13.8.

HRMS (MALDI-TOF) calcd for $C_{18}H_{20}IN_4O_2$ [M+H]⁺ 451.0625; found 451.0627.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]benzamide (1x)

Prepared from carboxylic acid **S4** (297 mg, 0.8 mmol) and [2-(5-methoxy-1*H*-indol-3-yl)ethyl]amine (228.3 mg, 1.2 mmol, 1.5 equiv) according to **GP4**; eluent: CH_2Cl_2 -MeOH = 50:1. Yield 370.6 mg (85%). Beige solid; mp 81–83 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.72 (m, 1H), 7.60–7.53 (m, 2H), 7.29 (m, 1H), 7.19 (d, J = 8.8 Hz, 1H), 6.99–

6.94 (m, 2H), 6.81 (dd, J = 8.8, 2.4 Hz, 1H), 5.87 (br t, J = 5.7 Hz, 1H), 3.81 (s, 3H), 3.49 (td, J = 6.8, 5.7 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 2.64 (m, 2H), 1.69 (m, 2H), 1.38 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.3 (C_{quat}), 153.9 (C_{quat}), 152.5 (C_{quat}), 134.7 (C_{quat}), 134.0 (C_{quat}), 131.5 (C_{quat}), 131.0, 130.9, 129.6, 128.3, 127.4 (C_{quat}), 123.2, 112.3, 112.0, 111.8 (C_{quat}), 100.3, 82.5 (C_{quat}), 55.9, 39.9, 31.1, 25.7, 24.8, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{24}H_{27}IN_5O_2$ [M+H]⁺ 544.1204; found 544.1203.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(3,5-dimethylisoxazol-4-yl)ethyl]benzamide (1y)

Prepared from carboxylic acid **S4** (297 mg, 0.8 mmol) and [2-(3,5dimethylisoxazol-4-yl)ethyl]amine (224 mg, 1.6 mmol, 2 equiv) according to **GP4**; eluent: CH_2Cl_2 -MeOH = 50:1. Yield 342.2 mg (87%). White solid; mp 166–168 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 1H), 7.64–7.59 (m, 2H), 7.31 (m, 1H), 6.19 (br t, J = 5.7 Hz, 1H), 3.18 (m, 2H), 2.71 (m, 2H), 2.33

(m, 2H), 2.27 (s, 3H), 2.16 (s, 3H), 1.70 (m, 2H), 1.40 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7 (C_{quat}), 165.4 (C_{quat}), 159.5 (C_{quat}), 152.6 (C_{quat}), 134.4 (C_{quat}), 133.9 (C_{quat}), 131.2, 131.0, 129.6, 128.4, 110.2 (C_{quat}), 82.5 (C_{quat}), 39.5, 31.1, 25.8, 22.2, 22.0, 13.8, 10.9, 10.1.

HRMS (MALDI-TOF) calcd for $C_{20}H_{25}IN_5O_2$ [M+H]⁺ 494.1047; found 494.1049.

N-(*tert*-Butyl)-2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide (1z)

Prepared from carboxylic acid S4 (222.7 mg, 0.6 mmol) and *tert*butylamine (126.1 μ L, 1.2 mmol, 2 equiv) according to GP4; eluent: hexanes–EtOAc = 2:1. Yield 205 mg (80%). White solid; mp 111– 113 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 1H), 7.62 (m, 1H), 7.58 (m, 1H), 7.28 (m, 1H), 5.42 (br s, 1H), 2.73 (m, 2H), 1.73 (m, 2H), 1.44 (m, 2H), 1.16 (s, 9H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.1 (C_{quat}), 152.6 (C_{quat}), 135.9 (C_{quat}), 133.6 (C_{quat}), 131.1, 130.8, 129.9, 128.1, 82.6 (C_{quat}), 51.6 (C_{quat}), 31.1, 28.2 (3C), 25.8, 22.3, 13.7. HRMS (MALDI-TOF) calcd for C₁₇H₂₄IN₄O [M+H]⁺ 427.0989; found 427.0988.

N,N'-Butane-1,4-diylbis[2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide] (1aa)

Prepared from carboxylic acid S4 (267.2 mg, 0.72 mmol, 2.4 equiv) and butane-1,4-diamine (30.1 μ L, 0.3 mmol) according to GP5; eluent: hexanes–EtOAc = 1:4. Yield 113.0 mg (47%). White solid; mp 135–137 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (m, 2H), 7.58–7.51 (m, 4H), 7.28 (m, 1H), 6.62 (br t, J = 5.5 Hz, 2H), 3.22 (m, 4H),

2.71 (m, 4H), 1.71 (m, 4H), 1.41 (m, 4H), 1.34 (m, 4H), 0.96 (t, *J* = 7.4 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.4 (2C_{quat}), 152.1 (2C_{quat}), 134.7 (2C_{quat}), 134.2 (2C_{quat}), 130.6 (4C), 129.1 (2C), 128.2 (2C), 82.5 (2C_{quat}), 39.3 (2C), 31.0 (2C), 26.2 (2C), 25.8 (2C), 22.2 (2C), 13.8 (2C).

HRMS (MALDI-TOF) calcd for $C_{30}H_{37}I_2N_8O_2$ [M+H]⁺ 795.1123; found 795.1122.

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-N-[(3 α ,5 β ,12 α)-3,12-dihydroxycholan-24-yl]-benzamide (1ab)

Prepared from carboxylic acid S4 (222.7 mg, 0.6 mmol) and $(3\alpha,5\beta,12\alpha)$ -24-aminocholane-3,12-diol⁵ (271.9 mg, 0.72 mmol, 1.2 equiv) according to GP5; eluent: CH₂Cl₂-MeOH = 20:1. Yield 284 mg (65%). Pale yellow solid; mp 124–126 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (m, 1H), 7.65 (m, 1H),

7.62 (m, 1H), 7.32 (m, 1H), 5.96 (br t, J = 5.6 Hz, 1H), 3.96 (m, 1H), 3.59 (tt, J = 11.0, 4.7 Hz, 1H), 3.18–3.03 (m, 2H), 2.74 (m, 2H), 1.99–0.81 (m, 35H), 0.98 (t, J = 7.4 Hz, 3H), 0.90 (s, 3H), 0.66 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.1 (C_{quat}), 152.3 (C_{quat}), 134.9 (C_{quat}), 133.7 (C_{quat}), 130.9, 130.7, 129.7, 128.2, 82.7 (C_{quat}), 73.0, 71.5, 47.9, 47.2, 46.3, 42.0, 40.4, 36.3, 35.9, 35.3, 35.2, 34.0, 33.4, 32.7, 31.0, 30.2, 28.3, 27.5, 27.1, 26.0, 26.0, 25.7, 23.6, 23.0, 22.2, 17.4, 13.7, 12.5.

HRMS (MALDI-TOF) calcd for $C_{37}H_{56}IN_4O_3$ [M+H]⁺ 731.3392; found 731.3396.

Synthesis of [1,2,3]triazolo[1,5-a]quinazolin-5(4H)-ones 2

General procedure 6 (GP6). In a vial with screw cap, 2-(5-iodotriazolyl)benzamide 1 (0.20 mmol, 1 equiv), CuI (3.8 mg, 0.020 mmol, 10 mol %), and Cs_2CO_3 (130.3 mg, 0.40 mmol, 2 equiv) were mixed under an Ar atmosphere in DMSO (2 mL). The reaction mixture was stirred at 100 °C in a dry block for 16 h, then diluted with CH_2Cl_2 (20 mL), washed with EDTA solution (20 mL) and water (4×20 mL). The organic layer was dried with anhydrous Na_2SO_4 , and the solvent was evaporated *in vacuo*. The residue was subjected to column chromatography on silica gel to afford pure triazole-fused lactam **2**.

3-Butyl-4-methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2a)

Prepared from iodotriazole **1a** (76.8 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 4:1. Yield 51.0 mg (99%). White solid; mp 97–98 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (br d, J = 8.3 Hz, 1H), 8.29 (dd, J = 7.9, 1.4 Hz, 1H), 7.81 (ddd, J = 8.3, 7.4, 1.4 Hz, 1H), 7.53 (m, 1H), 3.76 (s, 3H), 3.00 (m, 2H), 1.77 (m, 2H), 1.46 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.9 (C_{quat}), 134.9, 134.5 (C_{quat}), 132.5 (C_{quat}), 130.3 (C_{quat}), 129.1, 127.5, 115.9 (C_{quat}), 115.3, 33.1, 30.6, 25.9, 22.3, 13.8.

IR (KBr, cm⁻¹) v 2954, 2925, 2870, 1670, 1622, 1604, 1574, 1516, 1485, 1469, 1454, 1387, 1334, 1317, 1244, 1136, 1099, 1072, 995, 781, 762, 685.

HRMS (MALDI-TOF) calcd for $C_{14}H_{17}N_4O [M+H]^+ 257.1397$; found 257.1389.

3-Butyl-7-bromo-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2b)

Prepared from iodotriazole **1b** (92.6 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 58 mg (87%). Pale pink solid; mp 150–152 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 2.1 Hz, 1H), 8.23 (d, J = 8.7 Hz, 1H), 7.91 (dd, J = 8.7, 2.1 Hz, 1H), 3.77 (s, 3H), 3.00 (m, 2H), 1.78 (m, 2H), 1.47 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.7 (C_{quat}), 137.9, 133.3 (C_{quat}), 132.3 (C_{quat}), 131.8, 130.5 (C_{quat}), 121.1 (C_{quat}), 117.3 (C_{quat}), 117.1, 33.0, 30.7, 25.8, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for C₁₄H₁₆BrN₄O [M+H]⁺ 335.0502; found 335.0504.

3-Butyl-7-iodo-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2c)

Prepared from iodotriazole 1c (102.0 mg, 0.2 mmol) according to GP6; eluent: hexanes-EtOAc = 2:1. Yield 62 mg (81%). White solid; mp 131-133 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.62 (m, 1H), 8.12–8.06 (m, 2H),

3.76 (s, 3H), 3.00 (m, 2H), 1.78 (m, 2H), 1.47 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.5 (C_{quat}), 143.5, 137.8, 133.9 (C_{quat}), 132.3 (C_{quat}), 130.5 (C_{quat}), 117.3 (C_{quat}), 117.0, 91.7 (C_{quat}), 33.0, 30.7, 25.8, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{14}H_{16}IN_4O [M+H]^+$ 383.0363; found 383.0362.

3-Butyl-8-methoxy-4-methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2d)

Prepared from iodotriazole 1d (82.8 mg, 0.2 mmol) according to GP6; eluent: hexanes-EtOAc = 2:1. Yield 37.5 mg (65%). Yellow solid; mp 84-86 °C.

 -0^{\prime} ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.9 Hz, 1H), 7.73 (d, J = 2.4 Hz, 1H), 7.04 (dd, J = 8.9, 2.4 Hz, 1H), 3.99 (s, 3H), 3.75 (s, 3H), 3.01 (m, 2H), 1.78 (m, 2H), 1.48 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.8 (C_{quat}), 158.7 (C_{quat}), 136.1 (C_{quat}), 132.9 (C_{quat}), 130.8, 130.2 (C_{quat}), 116.3, 108.8 (C_{quat}), 97.7, 56.1, 33.1, 30.3, 25.9, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{15}H_{19}N_4O_2$ [M+H]⁺ 287.1503; found 287.1506.

3-Butyl-4,6-dimethyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2e)

Prepared from iodotriazole **1e** (79.6 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 18 mg (33%). Beige solid; mp 94–96 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (m, 1H), 7.66 (m, 1H), 7.33 (m, 1H), 3.72 (s, 3H), 3.00 (m, 2H), 2.88 (s, 3H), 1.77 (m, 2H), 1.47 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.7 (C_{quat}), 143.4 (C_{quat}), 135.8 (C_{quat}), 134.0, 133.1 (C_{quat}), 132.4 (C_{quat}), 130.9, 129.6 (C_{quat}), 113.5, 33.1, 30.4, 25.9, 23.2, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{15}H_{19}N_4O$ [M+H]⁺ 271.1553; found 271.1556.

3-Butyl-4,9-dimethyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2f)

Prepared from iodotriazole **1f** (79.6 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 45 mg (83%). White solid; mp 114–116 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 1H), 7.63 (m, 1H), 7.41 (m, 1H), 3.78 (s, 3H), 3.03 (m, 2H), 2.96 (s, 3H), 1.80 (m, 2H), 1.48 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.2 (C_{quat}), 138.1, 133.6 (C_{quat}), 132.8 (C_{quat}), 128.9 (C_{quat}), 128.6 (C_{quat}), 127.0, 126.8, 117.1 (C_{quat}), 33.0, 30.7, 25.9, 23.4, 22.3, 13.8.

HRMS (MALDI-TOF) calcd for $C_{15}H_{19}N_4O [M+H]^+ 271.1553$; found 271.1555.

3-tert-Butyl-4-methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2g)

Prepared from iodotriazole 1g (76.8 mg, 0.2 mmol) according to GP6; eluent: hexanes-EtOAc = 2:1. Yield 39 mg (76%). White solid; mp 140-142 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (br d, J = 8.2 Hz, 1H), 8.31 (br d, J = 7.9 Hz, 1H), 7.83 (m, 1H), 7.56 (m, 1H), 3.89 (s, 3H), 1.61 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.0 (C_{quat}), 138.0 (C_{quat}), 134.9, 134.8 (C_{quat}), 133.1 (C_{quat}), 128.9, 127.6, 115.5 (2C, CH + C_{quat}), 35.3, 32.2 (3C), 31.8 (C_{quat}).

HRMS (MALDI-TOF) calcd for $C_{14}H_{17}N_4O$ [M+H]⁺ 257.1397; found 257.1402.

4-Methyl-3-phenyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2h)

Prepared from iodotriazole **1h** (80.8 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 41.6 mg (75%). The reaction performed with 1.451 g (3.59 mmol) of **1h** afforded 806.1 mg (81%) of **2h**. White solid; mp 195–196 °C (lit.⁶ 200 °C (dec.)).

¹H NMR (400 MHz, CDCl₃) δ 8.39 (br d, J = 8.2 Hz, 1H), 8.31 (br d, J = 7.9 Hz, 1H), 7.86 (m, 1H), 7.61–7.54 (m, 3H), 7.53–7.44 (m, 3H), 3.41 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.9 (C_{quat}), 135.0, 134.4 (C_{quat}), 132.6 (C_{quat}), 131.0 (C_{quat}), 130.6 (2C), 130.3 (C_{quat}), 129.0, 128.8, 128.3 (2C), 127.8, 115.9 (C_{quat}), 115.3, 32.3. HRMS (MALDI-TOF) calcd for C₁₆H₁₂N₄KO [M+K]⁺ 315.0643; found 315.0645.

4-Methyl-3-[2-(trifluoromethyl)phenyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2i)

Prepared from iodotriazole **1i** (94.4 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 68.5 mg (99%). White solid; mp 185-187 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.46 (br d, J = 8.2 Hz, 1H), 8.36 (m, 1H), 7.90 (m, 1H), 7.86 (m, 1H), 7.72–7.56 (m, 4H), 3.23 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.8 (C_{quat}), 135.1, 134.4 (C_{quat}), 134.0, 133.5 (C_{quat}), 131.6, 131.2 (q, $J_{CF} = 29.3$ Hz, C_{quat}), 129.9, 129.2, 128.9 (C_{quat}), 127.9, 126.7 (C_{quat}), 126.3, 123.6 (q, $J_{CF} = 273$ Hz, CF₃), 116.0 (C_{quat}), 115.4, 31.3.

HRMS (MALDI-TOF) calcd for $C_{17}H_{12}F_3N_4O [M+H]^+ 345.0958$; found 345.0961.

4-Methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2j)

Prepared from iodotriazole **1j** (77.2 mg, 0.2 mmol) according to **GP6**; eluent: CH₂Cl₂–EtOAc = 2:1. Yield 30.0 mg (75%). Off-white solid; mp 215–216 °C. ¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 8.39 (br d, J = 8.3 Hz, 1H), 8.36 (m, 1H), 7.91 (m, 1H), 7.63 (m, 1H), 7.53 (s, 1H), 3.66 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 158.5 (C_{quat}), 137.0 (C_{quat}), 135.1, 134.2 (C_{quat}), 129.1, 128.0, 116.4, 116.0 (C_{quat}), 115.2, 31.4.

HRMS (ESI-TOF) calcd for $C_{10}H_9N_4O$ [M+H]⁺ 201.0771; found 201.0775.

3-(2-Hydroxyethyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2k)

Prepared from iodotriazole **1k** (111.7 mg, 0.3 mmol) according to **GP6**; eluent: CH_2Cl_2 -MeOH = 20:1. Yield 57.8 mg (79%). White solid; mp 216–219 °C.

¹H NMR (400 MHz, DMSO- d_6 -CDCl₃ = 3:1 + CD₃OD) δ 8.31 (d, J = 8.2 Hz, 1H), 8.24 (dd, J = 7.9, 1.2 Hz, 1H), 7.92 (m, 1H), 7.62 (m, 1H), 4.76 (br t, J = 5.7 Hz, 0.5H due to H/D exchange), 3.78 (m, 2H), 3.77 (s, 3H), 3.15 (t, J = 6.5 Hz, 2H).

¹³C{¹H} NMR (100 MHz, DMSO- d_6 -CDCl₃ = 3:1 + CD₃OD) δ 158.0 (C_{quat}), 134.8, 134.0 (C_{quat}), 133.6 (C_{quat}), 128.6, 127.39 (C_{quat}), 127.37, 115.6 (C_{quat}), 114.6, 61.2 and 61.1 (CH₂OH/D), 30.2, 29.1 and 29.0 (CH₂CH₂OH/D).

HRMS (MALDI-TOF) calcd for $C_{12}H_{13}N_4O_2$ [M+H]⁺ 245.1033; found 245.1036.

3-(4-*tert*-Butylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2l)

Prepared from iodotriazole 11 (92.1 mg, 0.2 mmol) according to **GP6**; eluent: hexanes-EtOAc = 2:1. Yield 66.1 mg (99%). White solid; mp 183-185 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (br d, J = 8.2 Hz, 1H), 8.31 (br d,

J = 7.8 Hz, 1H, 7.87 (m, 1H), 7.58 (m, 1H), 7.53-7.47 (m, 4H), 3.45 (s, 3H), 1.38 (s, 9H). ${}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (100 MHz, CDCl}_{3}) \delta 159.0 \text{ (C}_{quat}), 151.9 \text{ (C}_{quat}), 135.0, 134.5 \text{ (C}_{quat}), 132.5 \text{ (C}_{quat}), 131.1 \text{ (C}_{quat}), 130.3 \text{ (2C)}, 129.1, 127.7, 127.2 \text{ (C}_{quat}), 125.3 \text{ (2C)}, 115.9 \text{ (C}_{quat}), 115.4, 34.7 \text{ (C}_{quat}), 32.4, 31.3 \text{ (3C)}.$

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O$ [M+H]⁺ 333.1710; found 333.1701.

3-(4-Methoxyphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2m)

Prepared from iodotriazole **1m** (52.1 mg, 0.12 mmol) according to **GP6**; eluent: hexanes–EtOAc = 2:1. Yield 36.1 mg (98%). White solid; mp 204–205 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (br d, J = 8.2 Hz, 1H), 8.33 (m, 1H), 7.87 (m, 1H), 7.59 (m, 1H), 7.50–7.45 (m, 2H), 7.04–6.99 (m, 2H), 3.88 (s, 3H), 3.42 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.0 (C_{quat}), 159.0 (C_{quat}), 135.0, 134.5 (C_{quat}), 132.5 (C_{quat}), 131.9 (2C), 130.8 (C_{quat}), 129.1, 127.7, 122.4 (C_{quat}), 115.9 (C_{quat}), 115.3, 113.8 (2C), 55.3, 32.1.

HRMS (MALDI-TOF) calcd for $C_{17}H_{15}N_4O_2$ [M+H]⁺ 307.1190; found 307.1193.

Methyl 3-(4-methyl-5-oxo-4,5-dihydro[1,2,3]triazolo[1,5-a]quinazolin-3-yl)benzoate (2n)

Prepared from iodotriazole **1n** (69.3 mg, 0.15 mmol) according to **GP6**; eluent: hexanes–EtOAc = 1:1. Yield 37.6 mg (75%). White solid; mp 179–181 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.44 (br d, J = 8.2 Hz, 1H), 8.36 (dd, J = 8.0, 1.4 Hz, 1H), 8.24 (m, 1H), 8.16 (m, 1H), 7.90 (ddd, J = 8.2, 7.5, 1.4 Hz, 1H), 7.81 (ddd, J = 7.6, 1.7, 1.2 Hz, 1H), 7.64–7.57 (m, 2H), 3.95 (s, 3H), 3.43 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.4 (C_{quat}), 158.9 (C_{quat}), 135.1, 134.8, 134.4 (C_{quat}), 133.0 (C_{quat}), 131.6, 130.7 (C_{quat}), 130.3 (C_{quat}), 130.0 (C_{quat}), 129.9, 129.2, 128.6, 128.0, 115.9 (C_{quat}), 115.4, 52.3, 32.5.

HRMS (MALDI-TOF) calcd for $C_{18}H_{15}N_4O_3$ [M+H]⁺ 335.1139; found 335.1138.

3-(4-Acetylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (20)

Prepared from iodotriazole **10** (66.9 mg, 0.15 mmol) according to **GP6**; eluent: hexanes–EtOAc = 1:1. Yield 27.6 mg (58%). White solid; mp 223-224 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 8.44 (br d, J = 8.2 Hz, 1H), 8.36 (dd, J = 8.0, 1.4 Hz, 1H), 8.11–8.07 (m, 2H), 7.91 (ddd, J = 8.2,

7.5, 1.4 Hz, 1H), 7.72–7.68 (m, 2H), 7.64 (m, 1H), 3.45 (s, 3H), 2.69 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 197.7 (C_{quat}), 159.0 (C_{quat}), 136.9 (C_{quat}), 135.2, 134.9 (C_{quat}), 134.3 (C_{quat}), 133.0 (C_{quat}), 130.7 (2C), 130.0 (C_{quat}), 129.1, 128.3 (2C), 128.1, 115.9 (C_{quat}), 115.4, 32.7, 26.6.

HRMS (MALDI-TOF) calcd for $C_{18}H_{15}N_4O_2$ [M+H]⁺ 319.1190; found 319.1184.

3-Butyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2p)

Prepared from iodotriazole **1p** (55.5 mg, 0.15 mmol) according to **GP6**; eluent: CH_2Cl_2 -MeOH = 20:1. Yield 24.7 mg (68%). White solid; mp 238–240 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 8.36 (br d, J = 8.2 Hz, 1H),

8.31 (dd, J = 8.0, 1.2 Hz, 1H), 7.88 (m, 1H), 7.59 (m, 1H), 2.82 (m, 2H), 1.72 (m, 2H), 1.42 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 159.8 (C_{quat}), 135.2, 135.0 (C_{quat}), 131.0 (C_{quat}), 129.5 (C_{quat}), 128.7, 127.6, 116.3 (C_{quat}), 115.2, 30.9, 23.2, 22.0, 13.4.

IR (KBr, cm⁻¹) v 2958, 2924, 2873, 2858, 2823, 1670, 1651, 1628, 1614, 1574, 1520, 1483, 1456, 1396, 1383, 1350, 1321, 1238, 1227, 1147, 849, 756, 696, 640, 536.

HRMS (MALDI-TOF) calcd for $C_{13}H_{15}N_4O [M+H]^+ 243.1240$; found 243.1245.

3-Butyl-4-(4-methylphenyl)[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2q)

Prepared from iodotriazole 1q (46.0 mg, 0.1 mmol) according to **GP6**; eluent: hexanes-EtOAc = 4:1. Yield 23.1 mg (69%). White solid; mp 134-135 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.43 (br d, J = 8.2 Hz, 1H), 8.34 (br d, J = 7.9 Hz, 1H), 7.86 (m, 1H), 7.56 (m, 1H), 7.39–7.33 (m, 2H), 7.28–

7.22 (m, 2H), 2.45 (s, 3H), 1.89 (m, 2H), 1.30 (m, 2H), 1.04 (m, 2H), 0.70 (t, J = 7.3 Hz, 3H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 159.2 (C_{quat}), 140.2 (C_{quat}), 135.2, 135.1 (C_{quat}), 132.8 (C_{quat}), 132.5 (C_{quat}), 131.0 (C_{quat}), 130.4 (2C), 129.6, 128.4 (2C), 127.6, 116.3 (C_{quat}), 115.5, 31.9, 24.5, 22.3, 21.3, 13.5.

IR (KBr, cm⁻¹) v 2952, 2925, 2862, 1678, 1618, 1601, 1568, 1512, 1483, 1385, 1319, 1308, 1284, 1171, 1136, 1107, 870, 816, 789, 760, 683.

Anal. calcd for $C_{20}H_{20}N_4O$: C, 72.27; H, 6.06; N, 16.86; found C, 71.92; H, 5.91; N, 16.60.

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O [M+H]^+ 333.1710$; found 333.1703.

3-Butyl-4-(4-methoxyphenyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2r)

Prepared from iodotriazole 1r (71.4 mg, 0.15 mmol) according to GP6; eluent: hexanes-EtOAc = 2:1. Yield 40.1 mg (77%). Beige solid; mp 153-155 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.44 (br d, J = 8.2 Hz, 1H), 8.35 (dd, J = 8.0, 1.1 Hz, 1H), 7.88 (m, 1H), 7.58 (m, 1H), 7.35–7.29 (m, 2H), 7.11–7.06 (m, 2H), 3.90 (s, 3H), 1.95 (m, 2H), 1.34 (m, 2H), 1.09 (m, 2H), 0.75 (t, J = 7.4 Hz, 3H).

 $\sum_{N \in N} \sum_{i=1}^{N} \sum_{j=1}^{13} C\{^{1}H\} \text{ NMR (100 MHz, CDCl_3) } \delta 160.5 (C_{quat}), 159.3 (C_{quat}), 135.2, 135.0 (C_{quat}), 132.6 (C_{quat}), 131.0 (C_{quat}), 129.7 (2C), 129.5, 127.9 (C_{quat}), 127.6, 116.2 (C_{quat}), 115.4, 115.0 (2C), 55.6, 31.9, 24.5, 22.2, 13.6.$

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O_2$ [M+H]⁺ 349.1659; found 349.1660.

3-Butyl-4-cyclopropyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2s)

Prepared from iodotriazole **1s** (82.1 mg, 0.2 mmol) according to **GP6**; eluent: hexanes–EtOAc = 4:1. Yield 45.6 mg (81%). White solid; mp 125-127 °C.

¹H NMR (600 MHz, CDCl₃) δ 8.34 (br d, J = 8.3 Hz, 1H), 8.27 (dd, J = 7.9, 1.5 Hz, 1H), 7.81 (m, 1H), 7.52 (m, 1H), 3.16 (tt, J = 6.9, 3.8 Hz, 1H), 3.11 (m, 2H), 1.84 (m, 2H), 1.47 (m, 2H), 1.33–1.28 (m, 2H), 1.04–1.01 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 160.0 (C_{quat}), 134.8, 134.6 (C_{quat}), 133.1 (C_{quat}), 131.1 (C_{quat}), 129.0, 127.4, 116.8 (C_{quat}), 115.3, 32.5, 27.1, 25.8, 22.6, 13.9, 10.4 (2C).

HRMS (MALDI-TOF) calcd for $C_{16}H_{19}N_4O [M+H]^+ 283.1553$; found 283.1552.

3-Butyl-4-cyclohexyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2t)

Prepared from iodotriazole 1t (67.8 mg, 0.15 mmol) according to **GP6**; eluents: hexanes–EtOAc = 10:1 and 4:1. Yield 44.9 mg (92%). White solid; mp 108–110 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.33 (br d, J = 8.1 Hz, 1H), 8.24 (dd, J = 8.0, 1.0 Hz, 1H), 7.78 (m, 1H), 7.51 (m, 1H), 4.10 (tt, J = 12.0, 3.5

Hz, 1H), 2.94 (m, 2H), 2.72 (m, 2H), 1.95 (m, 2H), 1.84 (m, 2H), 1.78–1.67 (m, 3H), 1.48 (m, 2H), 1.39–1.24 (m, 3H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.2 (C_{quat}), 134.6, 134.5 (C_{quat}), 133.0 (C_{quat}), 129.4 (C_{quat}), 128.8, 127.5, 117.6 (C_{quat}), 115.3, 60.9, 32.6, 29.0 (2C), 27.5, 26.4 (2C), 25.0, 22.6, 13.9. HRMS (MALDI-TOF) calcd for C₁₉H₂₅N₄O [M+H]⁺ 325.2023; found 325.2030.

3-Butyl-4-[(1R)-1-phenylethyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2u)

Prepared from iodotriazole 1u (71.2 mg, 0.15 mmol) according to **GP6**; eluent: hexanes-EtOAc = 4:1. Yield 39.9 mg (77%). White solid; mp 194–195 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (br d, J = 8.3 Hz, 1H), 8.24 (br d, J

= 8.0 Hz, 1H), 7.83 (m, 1H), 7.52 (m, 1H), 7.39–7.26 (m, 5H), 5.99 (br s, 1H), 2.87 (m, 1H), 2.75 (m, 1H), 2.06 (d, J = 7.0 Hz, 3H), 1.77–1.50 (m, 2H), 1.40–1.27 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.6 (C_{quat}), 139.1 (C_{quat}), 134.9, 134.6 (C_{quat}), 132.5 (C_{quat}), 129.8 (C_{quat}), 129.1, 128.6 (2C), 127.5, 127.4, 125.9 (2C), 116.8 (C_{quat}), 115.3, 55.4 (br), 32.0, 27.0, 22.4, 16.6, 13.7.

HRMS (MALDI-TOF) calcd for $C_{21}H_{23}N_2O [M-N_2+H]^+ 319.1805$; found 319.1808.

3-Butyl-4-(2-furylmethyl)[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2w)

Prepared from iodotriazole 1w (73.3 mg, 0.163 mmol) according to **GP6**; eluent: hexanes-EtOAc = 4:1. Yield 46.2 mg (88%). White solid; mp 108-109 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.32 (br d, J = 8.2 Hz, 1H), 8.24 (dd, J = 8.1, 1.3 Hz, 1H), 7.76 (m, 1H), 7.48 (m, 1H), 7.28 (m, 1H), 6.30 (d, J = 3.3 Hz, 1H), 6.27 (dd, J = 3.3, 1.8 Hz, 1H), 5.33 (s, 2H), 2.95 (m, 2H), 1.70 (m, 2H), 1.40 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.7 (C_{quat}), 148.6 (C_{quat}), 142.5, 135.1, 134.8 (C_{quat}), 131.9 (C_{quat}), 130.2 (C_{quat}), 129.3, 127.5, 115.8 (C_{quat}), 115.4, 110.7, 108.9, 40.4, 32.4, 25.7, 22.4, 13.8. IR (KBr, cm⁻¹) v 2952, 2922, 2858, 1674, 1620, 1599, 1566, 1510, 1450, 1309, 1240, 1159, 1144, 1068, 1007, 924, 795, 756, 681.

HRMS (MALDI-TOF) calcd for C₁₈H₁₉N₄O₂ [M+H]⁺ 323.1503; found 323.1495.

3-Butyl-4-[2-(5-methoxy-1*H*-indol-3-yl)ethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2x)

Prepared from iodotriazole 1x (108.7 mg, 0.2 mmol) according to **GP6**; eluent: CH₂Cl₂–MeOH = 50:1. Yield 67 mg (81%). White solid; mp 239–240 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (br d, J = 8.3 Hz, 1H), 8.38 (dd, J = 8.0, 1.3 Hz, 1H), 8.13 (br s, 1H), 7.85 (m, 1H), 7.58 (m, 1H), 7.26 (d, J = 8.9 Hz, 1H), 7.19 (d, J = 2.3 Hz, 1H), 7.07 (d, J

= 1.9 Hz, 1H), 6.86 (dd, *J* = 8.9, 2.3 Hz, 1H), 4.49 (m, 2H), 3.86 (s, 3H), 3.20 (m, 2H), 2.93 (m, 2H), 1.77 (m, 2H), 1.40 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.8 (C_{quat}), 154.2 (C_{quat}), 134.9, 134.7 (C_{quat}), 132.0 (C_{quat}), 131.3 (C_{quat}), 129.4 (C_{quat}), 129.1, 127.63 (C_{quat}), 127.58, 122.4, 116.1 (C_{quat}), 115.4, 112.8, 112.0, 111.3 (C_{quat}), 100.3, 55.8, 44.4, 32.6, 26.0, 24.5, 22.5, 13.8.

HRMS (MALDI-TOF) calcd for $C_{24}H_{26}N_3O_2$ [M–N₂+H]⁺ 388.2020; found 388.2022.

3-Butyl-4-[2-(3,5-dimethylisoxazol-4-yl)ethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2y)

Prepared from iodotriazole 1y (98.7 mg, 0.2 mmol) according to GP6; eluent: hexanes-EtOAc = 2:1. Yield 68 mg (93%). White solid; mp 169-171 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.40 (br d, J = 8.3 Hz, 1H), 8.32 (br d, J = 7.8 Hz, 1H), 7.87 (m, 1H), 7.59 (m, 1H), 4.26 (m, 2H), 2.97 (m, 2H),

2.78 (m, 2H), 2.35 (s, 6H), 1.84 (m, 2H), 1.48 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.0 (C_{quat}), 159.4 (C_{quat}), 158.8 (C_{quat}), 135.2, 134.6 (C_{quat}), 131.6 (C_{quat}), 129.05, 128.96 (C_{quat}), 127.7, 115.7 (C_{quat}), 115.4, 109.4 (C_{quat}), 43.2, 32.4, 26.1, 22.5, 21.6, 13.8, 11.0, 10.2.

HRMS (MALDI-TOF) calcd for $C_{20}H_{24}N_5O_2$ [M+H]⁺ 366.1925; found 366.1927.

4,4'-Butane-1,4-diylbis(3-butyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one) (2aa)

Prepared from iodotriazole **1aa** (79.4 mg, 0.1 mmol) according to **GP6** using CuI (3.8 mg, 20 mol%) and Cs_2CO_3 (130.4 mg, 4 equiv) in DMSO (2 mL); eluent: hexanes-CH₂Cl₂-EtOAc = 2:1:1. Yield 51.0 mg (95%). White solid; mp 191–192 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD) δ 8.29 (br d, J = 8.2 Hz, 2H), 8.20 (br d, J = 7.9 Hz, 2H), 7.78 (m, 2H), 7.49 (m, 2H), 4.20 (m, 4H), 2.79 (m, 4H), 1.84 (m, 4H), 1.69 (m, 4H), 1.35 (m, 4H), 0.87 (t, J = 7.3 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD) δ 158.8 (2C_{quat}), 135.1 (2C), 134.4 (2C_{quat}), 131.6 (2C_{quat}), 129.1 (2C_{quat}), 129.0 (2C), 127.7 (2C), 115.7 (2C_{quat}), 115.2 (2C), 42.8 (2C), 32.5 (2C), 25.8 (2C), 25.7 (2C), 22.3 (2C), 13.7 (2C).

HRMS (MALDI-TOF) calcd for $C_{30}H_{35}N_8O_2$ [M+H]⁺ 539.2877; found 539.2878.

3-Butyl-4-[$(3\alpha,5\beta,12\alpha)$ -3,12-dihydroxycholan-24-yl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)one (2ab)

Prepared from iodotriazole **1ab** (109.6 mg, 0.15 mmol) according to **GP6**; eluent: hexanes–EtOAc = 1:2. Yield 79.6 mg (88%). Off-white solid; mp 103–106 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (br d, J = 8.2 Hz, 1H), 8.34 (dd, J = 8.0, 1.2 Hz, 1H), 7.84 (m, 1H), 7.57 (m, 1H), 4.18 (ddd, J = 13.8, 10.7, 5.5 Hz, 1H), 4.09 (ddd, J = 13.8,

10.7, 5.4 Hz, 1H), 3.97 (m, 1H), 3.61 (tt, J = 11.0, 4.7 Hz, 1H), 2.94–2.88 (m, 2H), 1.92–0.85 (m, 32H), 1.00 (d, J = 6.6 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H), 0.90 (s, 3H), 0.68 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.5 (C_{quat}), 134.8, 134.5 (C_{quat}), 131.8 (C_{quat}), 129.3 (C_{quat}), 129.0, 127.5, 116.0 (C_{quat}), 115.2, 72.9, 71.5, 48.1, 47.0, 46.3, 44.1, 42.0, 36.3, 35.9, 35.3, 35.1, 34.0, 33.5, 32.6, 32.3, 30.3, 28.6, 27.5, 27.0, 26.0, 25.8, 25.2, 23.6, 23.0, 22.5, 17.6, 13.8, 12.6.

HRMS (MALDI-TOF) calcd for $C_{37}H_{55}N_4O_3$ [M+H]⁺ 603.4269; found 603.4268.

Synthesis of 5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imines 3

General procedure 7 (GP7, method A in the main text). In a vial with screw cap, 2-(5-iodotriazolyl)benzamide 1 (0.20 mmol, 1 equiv), cetyltrimethylammonium bromide (CTAB) (14.6 mg, 0.040 mmol, 20 mol %), and K_2CO_3 (55.3 mg, 0.40 mmol, 2 equiv) were mixed under an Ar atmosphere in dioxane (2 mL). The reaction mixture was stirred at 100 °C in a dry block for 16 h, then diluted with CH₂Cl₂ (20 mL), and washed with water (20 mL). The organic layer was dried with anhydrous Na₂SO₄, and the solvents were evaporated *in vacuo*. The residue was subjected to column chromatography on deactivated silica gel (*vide infra*) to afford pure triazole-fused cyclic imidate **3**.

Column chromatography on deactivated silica gel

Macherey–Nagel silica gel 60 (0.040–0.063 mm) was suspended in the mixture PhH–MeCN (20:1) containing 2% v/v Et₃N and stored for at least 24 h. Then, the column was filled with deactivated silica gel and washed with 3-fold volume of the corresponding eluent. A concentrated solution of the sample in the eluent (with small amounts of CH_2Cl_2 to increase the solubility) was used for loading on the column.

General procedure 8 (GP8, method B in the main text). Synthesis was performed as described for GP7 with Na_2CO_3 (2 equiv) in dioxane without addition of CTAB.

3-Butyl-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3a)

Prepared from iodotriazole **1a** (38.4 mg, 0.1 mmol) according to **GP7**; eluent: PhH–MeCN = 20:1. Yield 25.2 mg (98%). Yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (m, 1H), 8.10 (m, 1H), 7.65 (m, 1H), 7.40 (m, 1H), 3.31 (s, 3H), 2.76 (t, J = 7.5 Hz, 2H), 1.74 (m, 2H), 1.42 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.5 (C_{quat}), 142.2 (C_{quat}), 133.3, 132.2 (C_{quat}), 128.5 (C_{quat}), 128.1, 127.9, 114.7, 114.4 (C_{quat}), 33.6, 30.3, 23.4, 22.2, 13.7.

IR (KBr, cm⁻¹) v 3296, 3078, 2956, 2929, 2871, 2860, 1647, 1601, 1522, 1448, 1408, 1323, 1282, 1240, 1161, 758, 671.

HRMS (MALDI-TOF) calcd for C₁₄H₁₉N₄O₂ [M+H₂O+H]⁺ 275.1503; found 275.1508.

3-Butyl-7-iodo-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3c)

Prepared from iodotriazole 1c (102.0 mg, 0.2 mmol) according to **GP7**; eluent: PhH–MeCN = 40:1. Yield 61.9 mg (81%). White solid; mp 125–127 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 1.8 Hz, 1H), 7.96 (dd, J

= 8.6, 1.8 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 3.33 (s, 3H), 2.76 (t, *J* = 7.5 Hz, 2H), 1.75 (m, 2H), 1.43 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.9 (C_{quat}), 142.0 (2C, CH + C_{quat}), 136.7, 131.6 (C_{quat}), 128.7 (C_{quat}), 116.4, 115.9 (C_{quat}), 92.0 (C_{quat}), 33.8, 30.2, 23.4, 22.2, 13.7.

HRMS (MALDI-TOF) calcd for $C_{14}H_{16}IN_4O [M+H]^+$ 383.0363; found 383.0363.

3-Butyl-8-methoxy-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3d)

Prepared from iodotriazole 1d (82.9 mg, 0.2 mmol) according to GP7; eluent: PhH–MeCN = 20:1. Yield 52.8 mg (92%). White solid; mp 90–91 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.9 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H), 6.92 (dd, J = 8.9, 2.5 Hz, 1H), 3.94 (s, 3H), 3.28 (s,

3H), 2.76 (t, *J* = 7.6 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.5 (C_{quat}), 144.5 (C_{quat}), 142.5 (C_{quat}), 133.4 (C_{quat}), 129.7, 128.5 (C_{quat}), 115.9, 106.8 (C_{quat}), 98.1, 55.9, 33.3, 30.2, 23.4, 22.1, 13.7.

HRMS (MALDI-TOF) calcd for $C_{15}H_{19}N_4O_2$ [M+H]⁺ 287.1503; found 287.1504.

3-tert-Butyl-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3g)

Prepared from iodotriazole 1g (76.8 mg, 0.2 mmol) according to GP7; eluent: PhH–MeCN = 20:1. Yield 49.9 mg (97%). White solid; mp 120– 122 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.14–8.10 (m, 2H), 7.66 (m, 1H), 7.41 (m, 1H), 3.32 (s, 3H), 1.47 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.7 (C_{quat}), 140.9 (C_{quat}), 136.1 (C_{quat}), 133.2, 132.2 (C_{quat}), 127.9 (2C), 114.8, 114.2 (C_{quat}), 33.9, 30.9 (C_{quat}), 29.3 (3C).

HRMS (MALDI-TOF) calcd for $C_{14}H_{16}KN_4O [M+K]^+$ 295.0956; found 295.0952.

N-Methyl-3-phenyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3h)

Prepared from iodotriazole **1h** (109.7 mg, 0.271 mmol) according to **GP8**; eluent: hexanes–EtOAc = 1:1. Yield 67 mg (89%). White solid; mp 191–192 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.19–8.14 (m, 2H), 8.02–7.97 (m, 2H), 7.69 (m, 1H), 7.50–7.42 (m, 3H), 7.33 (m, 1H), 3.43 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.0 (C_{quat}), 141.5 (C_{quat}), 133.5, 132.0 (C_{quat}), 129.2 (C_{quat}), 128.8 (2C), 128.3, 128.2, 127.8, 127.8, 125.1 (2C), 114.9, 114.2 (C_{quat}), 34.1.

HRMS (MALDI-TOF) calcd for $C_{16}H_{12}N_4NaO [M+Na]^+ 299.0903$; found 299.0898.

3-(4-*tert*-Butylphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3l)

Prepared from iodotriazole 11 (92.1 mg, 0.2 mmol) according to GP8; eluent: PhH–MeCN = 20:1. Yield 65.5 mg (99%). Pale yellow solid; mp 146–148 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 7.9, 1.3 Hz, 1H), 8.10

(m, 1H), 7.93–7.89 (m, 2H), 7.64 (m, 1H), 7.52–7.48 (m, 2H), 7.40

(m, 1H), 3.39 (s, 3H), 1.36 (s, 9H).

OMe

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.8 (C_{quat}), 144.0 (C_{quat}), 141.3 (C_{quat}), 133.3, 132.0 (C_{quat}), 128.1, 128.0, 127.8 (C_{quat}), 126.2 (C_{quat}), 125.7 (2C), 124.8 (2C), 114.8, 114.1 (C_{quat}), 34.6 (C_{quat}), 34.0, 31.2 (3C).

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O$ [M+H]⁺ 333.1710; found 333.1710.

3-(4-Methoxyphenyl)-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3m)

Prepared from iodotriazole **1m** (86.8 mg, 0.2 mmol) according to **GP8**; eluent: PhH–MeCN = 20:1. Yield 45.3 mg (74%). Beige solid; mp 188–190 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.19–8.15 (m, 2H), 7.95–7.90 (m, 2H), 7.70 (m, 1H), 7.46 (m, 1H), 7.04–6.99 (m, 2H), 3.85 (s, 3H), 3.43 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.1 (C_{quat}), 144.1 (C_{quat}), 140.7 (C_{quat}), 133.3, 132.0 (C_{quat}), 128.1, 128.0, 127.6 (C_{quat}), 126.2 (2C), 121.7 (C_{quat}), 114.8, 114.15 (2C), 114.11 (C_{quat}), 55.2, 34.0.

HRMS (MALDI-TOF) calcd for $C_{17}H_{15}N_4O_2$ [M+H]⁺ 307.1190; found 307.1193.

Methyl 3-[5-(methylimino)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-3-yl]benzoate (3n)

Prepared from iodotriazole **1n** (69.3 mg, 0.15 mmol) according to **GP8** with heating for 38 h; eluent: PhH–MeCN = 20:1. Yield 46.5 mg (93%). White solid; mp 185–187 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.50 (br s, 1H), 8.09–7.99 (m, 3H), 7.84 (m, 1H), 7.60 (m, 1H), 7.41 (m, 1H), 7.36 (m, 1H), 3.85 (s, 3H), 3.35 (s, 3H).

 $\sum_{n \in N} \sum_{n \in N} \sum_{i=1}^{13} C\{^{1}H\} NMR (100 MHz, CDCl_{3}) \delta 166.6 (C_{quat}), 143.6 (C_{quat}), 141.6 (C_{quat}), 133.5, 131.7 (C_{quat}), 130.5 (C_{quat}), 129.3 (C_{quat}), 128.9 (2C), 128.6, 128.4, 128.1, 126.7 (C_{quat}), 125.9, 114.8, 114.0 (C_{quat}), 52.2, 33.9.$

HRMS (MALDI-TOF) calcd for $C_{18}H_{15}N_4O_3$ [M+H]⁺ 335.1139; found 335.1140.

3-(4-Acetylphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (30)

Prepared from iodotriazole **1o** (66.9 mg, 0.15 mmol) according to **GP8** with heating for 34 h; eluent: PhH–MeCN = 20:1. Yield 39.1 g (82%). White solid; mp 192–194 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.20–8.14 (m, 2H), 8.10–8.03 (m, 4H), 7.72 (m, 1H), 7.48 (m, 1H), 3.45 (s, 3H), 2.63 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.1 (C_{quat}), 143.3 (C_{quat}), 142.1 (C_{quat}), 135.7 (C_{quat}), 133.5, 131.6 (C_{quat}), 128.9 (2C), 128.4, 128.2 (C_{quat}), 128.1, 126.7 (C_{quat}), 124.6 (2C), 114.8, 114.0 (C_{quat}), 34.1, 26.5.

HRMS (MALDI-TOF) calcd for $C_{18}H_{15}N_4O_2$ [M+H]⁺ 319.1190; found 319.1188.

3-Butyl-*N*-(4-methylphenyl)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3q)

Prepared from iodotriazole 1q (69.0 mg, 0.15 mmol) according to **GP8** with heating for 34 h; eluent: PhH–MeCN = 30:1. Yield 25.0 mg (50%). Beige solid; mp 91–93 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.72 (m, 1H), 7.49 (m, 1H), 7.24–7.17 (m, 4H), 2.69 (t, J = 7.6 Hz, 2H), 2.38 (s, 3H), 1.67 (m, 2H), 1.36 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0 (C_{quat}), 141.8 (C_{quat}), 141.1 (C_{quat}), 135.1 (C_{quat}), 133.9, 132.9 (C_{quat}), 129.4 (2C), 129.0, 128.8 (C_{quat}), 128.1, 123.3 (2C), 114.8, 114.5 (C_{quat}), 30.1, 23.5, 22.2, 21.0, 13.7.

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O$ [M+H]⁺ 333.1710; found 333.1713.

3-Butyl-*N*-(4-methoxyphenyl)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3r)

Prepared from iodotriazole 1r (71.4 mg, 0.15 mmol) according to GP8 with heating for 48 h; eluent: PhH–MeCN = 20:1. Yield 37.7 mg (72%). Beige solid; mp 126–128 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, J = 7.9, 1.0 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.70 (m, 1H), 7.47 (m, 1H), 7.39–7.32 (m, 2H), 6.96–6.89 (m, 2H), 3.85 (s, 3H), 2.72 (t, J = 7.6 Hz, 2H), 1.71 (m, 2H), 1.39 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.4 (C_{quat}), 141.8 (C_{quat}), 141.2 (C_{quat}), 136.5 (C_{quat}), 133.6, 132.7 (C_{quat}), 128.9, 128.7 (C_{quat}), 128.1,

125.5 (2C), 114.7 (2C, CH + C_{quat}), 113.9 (2C), 55.4, 30.2, 23.5, 22.2, 13.7.

HRMS (MALDI-TOF) calcd for $C_{20}H_{21}N_4O_2$ [M+H]⁺ 349.1659; found 349.1664.

3-Butyl-*N*-cyclopropyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3s)

Prepared from iodotriazole **1s** (82.1 mg, 0.2 mmol) according to **GP7**; eluent: PhH–MeCN = 20:1. Yield 49.5 mg (88%). White solid; mp 94–96 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.1 Hz, 1H), 8.04 (dd, J = 8.1, 1.1 Hz, 1H), 7.61 (m, 1H), 7.36 (m, 1H), 3.55 (tt, J = 6.8, 3.5 Hz,

1H), 2.77 (t, J = 7.5 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 1.01–0.92 (m, 4H), 0.97 (t, J = 7.3 Hz, 3H), 0.92–0.86 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.6 (C_{quat}), 142.2 (C_{quat}), 132.8, 131.8 (C_{quat}), 128.4 (C_{quat}), 127.8, 127.7, 114.6 (2C, CH + C_{quat}), 30.3, 28.9, 23.4, 22.2, 13.7, 8.8 (2C).

HRMS (MALDI-TOF) calcd for $C_{16}H_{19}N_4O [M+H]^+ 283.1553$; found 283.1555.

3-Butyl-N-cyclohexyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3t)

Prepared from iodotriazole 1t (90.5 mg, 0.2 mmol) according to GP7 with heating for 36 h; eluent: PhH–MeCN = 20:1. Yield 59.4 mg (92%). White solid; mp 72–74 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 8.0, 1.1 Hz, 1H), 8.09 (dd, J = 8.1, 1.0 Hz, 1H), 7.64 (m, 1H), 7.40 (m, 1H), 3.97 (tt, J = 9.5, 3.5

Hz, 1H), 2.77 (t, *J* = 7.5 Hz, 2H), 1.88–1.79 (m, 4H), 1.76 (m, 2H), 1.68 (m, 1H), 1.55–1.27 (m, 7H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.4 (C_{quat}), 141.3 (C_{quat}), 133.0, 132.3 (C_{quat}), 128.5, 128.3 (C_{quat}), 127.8, 114.7 (C_{quat}), 114.6, 54.9, 33.4 (2C), 30.2, 25.7, 24.5 (2C), 23.5, 22.1, 13.7. HRMS (MALDI-TOF) calcd for C₁₉H₂₇N₄O₂ [M+H₂O+H]⁺ 343.2129; found 343.2128.

3-Butyl-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5imine (3x)

Prepared from iodotriazole 1x (81.5 mg, 0.15 mmol) according to GP7 with heating for 20 h; eluent: PhH–MeCN = 15:1. Yield 50.8 mg (82%). Pale yellow solid; mp 144–146 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 8.1, 1.0 Hz, 1H), 8.14 (br s, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.62 (m, 1H), 7.39 (m, 1H), 7.20 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 2.3 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.83 (dd, J = 8.8, 2.3 Hz, 1H), 3.94 (t, J = 7.3 Hz, 2H), 3.84 (s, 3H), 3.14 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 1.67 (m, 2H), 1.37 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.8 (C_{quat}), 143.1 (C_{quat}), 142.1 (C_{quat}), 133.2, 132.2 (C_{quat}), 131.3 (C_{quat}), 128.4 (C_{quat}), 128.3, 127.85 (C_{quat}), 127.83, 122.7, 114.6, 114.4 (C_{quat}), 114.0 (C_{quat}), 111.9, 111.8, 100.7, 55.8, 47.4, 30.3, 26.4, 23.2, 22.1, 13.7.

HRMS (MALDI-TOF) calcd for $C_{24}H_{26}N_5O_2$ [M+H]⁺ 416.2081; found 416.2077.

3-Butyl-*N*-[2-(3,5-dimethylisoxazol-4-yl)ethyl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5imine (3y)

Prepared from iodotriazole **1y** (59.2 mg, 0.12 mmol) according to **GP7** with heating for 20 h; eluent: PhH–MeCN = 20:1. Yield 42.3 mg (96%). White solid; mp 105–107 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 8.2, 1.0 Hz, 1H), 8.11 (dd, J = 8.0, 1.3 Hz, 1H), 7.68 (m, 1H), 7.43 (m, 1H), 3.72 (t, J = 7.0 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.72 (t, J = 7.0 Hz, 2H), 2.38 (s, 3H),

2.30 (s, 3H), 1.73 (m, 2H), 1.42 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.5 (C_{quat}), 159.7 (C_{quat}), 143.7 (C_{quat}), 141.9 (C_{quat}), 133.5, 132.3 (C_{quat}), 128.4 (C_{quat}), 128.1, 128.0, 114.8, 114.0 (C_{quat}), 111.7 (C_{quat}), 46.3, 30.3, 23.4, 23.3, 22.1, 13.7, 11.1, 10.3.

HRMS (MALDI-TOF) calcd for $C_{20}H_{24}N_5O_2$ [M+H]⁺ 366.1925; found 366.1928.

3-Butyl-*N-tert*-butyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3z)

Prepared from iodotriazole 1z (85.3 mg, 0.2 mmol) according to GP7 with heating for 57 h; eluent: PhH–MeCN = 20:1. Yield 50.2 mg (84%). White solid; mp 50–51 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 8.0, 1.4 Hz, 1H), 8.09 (dd, J = 8.2, 1.1 Hz, 1H), 7.63 (ddd, J = 8.2, 7.5, 1.4 Hz, 1H), 7.39 (dd, J =

8.0, 7.5, 1.1 Hz, 1H), 2.76 (t, *J* = 7.5 Hz, 2H), 1.76 (m, 2H), 1.46 (s, 9H), 1.43 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.3 (C_{quat}), 139.4 (C_{quat}), 132.9, 132.4 (C_{quat}), 129.1, 128.4 (C_{quat}), 127.7, 115.3 (C_{quat}), 114.6, 54.9 (C_{quat}), 30.7, 29.9 (3C), 23.5, 22.2, 13.7.

HRMS (MALDI-TOF) calcd for $C_{17}H_{23}N_4O$ [M+H]⁺ 299.1866; found 299.1863.

$\label{eq:solution} 3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]-3-Butyl-N-[(3\alpha,5\beta,12\alpha)-3,12-a][3,1]-3-Butyl-3,12-a][3,12-3,12-a][3,12-a][3,12-3,12-a][3,12$

benzoxazin-5-imine (3ab)

Prepared from iodotriazole **1ab** (109.6 mg, 0.15 mmol) according to **GP7**; eluent: PhH–EtOAc = 1:1. Yield 70.2 mg (78%). White solid; mp 85–87 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 8.0, 1.1 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.66 (m, 1H), 7.42 (m, 1H), 4.00 (m, 1H), 3.65–3.54 (m, 3H), 2.76 (t, J = 7.6 Hz, 2H),

2.17 (br s, 2H), 1.92–0.81 (m, 30H), 1.03 (d, *J* = 6.5 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H), 0.90 (s, 3H), 0.68 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.8 (C_{quat}), 142.2 (C_{quat}), 133.2, 132.2 (C_{quat}), 128.4 (C_{quat}), 128.2, 127.9, 114.7, 114.5 (C_{quat}), 73.1, 71.6, 48.2, 47.4, 47.0, 46.4, 42.0, 36.3, 35.9, 35.4, 35.2, 34.0, 33.6, 33.5, 30.4, 30.3, 28.5, 27.5, 27.1, 26.9, 26.1, 23.6, 23.4, 23.1, 22.1, 17.7, 13.7, 12.7.

HRMS (MALDI-TOF) calcd for $C_{37}H_{55}N_4O_3$ [M+H]⁺ 603.4269; found 603.4268.

Details of X-ray diffraction measurements

Crystallographic data were collected at 100 K on a Bruker SMART APEX II diffractometer equipped with a PHOTON II CMOS detector using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.⁷ The structure was solved by direct methods and refined by full matrix least-squares on F2 with anisotropic thermal parameters for all non-hydrogen atoms using Olex2 package.⁸ Hydrogen atoms were placed in calculated positions and refined using a riding model. Crystallographic details are presented in Table S1. CCDC 2242839 contains the supplementary crystallographic data for the structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Empirical formula	$C_{16}H_{12}N_4O$
$M_{ m w}$	276.30
Temperature (K)	100
Size (mm)	0.4 imes 0.1 imes 0.08
Cryst. system	monoclinic
Space group	P 2 ₁ /c
<i>a</i> (Å)	7.6681(5)
<i>b</i> (Å)	12.2337(8)
<i>c</i> (Å)	13.8648(8)
α (deg)	90
β (deg)	100.657(2)
γ (deg)	90
V (Å ³)	1278.21(14)
Z	4
$\rho_{\rm cald} ({\rm g} \cdot {\rm cm}^{-3})$	1.436
Abs coeff (mm^{-1})	0.095
F(000)	576.0
θ range (deg)	$2.24 < \theta < 31.57$
no. of collected/unique rflns	22327 / 4252
Completeness to θ (%)	99.5
no. of data/restraints/params	4252/0/238
Goodness of fit on F2	1.032
Final R indices $(I > 2\sigma(I))$	R1 = 0.0472, wR2 = 0.1076
R indices (all data)	R1 = 0.0720, wR2 = 0.1194
Largest diff peak/hole (e/Å3)	0.349 / -0.270

Table S1. Details of the X-ray crystal data collection and structure refinement for compound 3h.

Details of DFT calculations

The calculations were performed using ORCA 5.0.3 program package.⁹ DFT calculations were performed at B3LYP¹⁰/ma-SVP¹¹ level of theory using PCM¹² solvation model with DMSO as solvent. RIJCOSX approximation was used to speed up the calculations. Thermodynamic properties were calculated for ideal gas at 298.15 K using QRRHO approach¹³ for vibrational entropy correction. The nature of optimized intermediates and transition states was verified by frequency analysis. IRC calculations were performed to verify the connectivity of the PES. CYLView¹⁴ was used to visualize structures.

Scheme S1. Non-catalytic pathways for cyclization of 2-(5-iodotriazolyl)benzamides.

Scheme S2. Calculated free energies (ΔG_{298} , kcal/mol) of intermediates for paths A-D.

Table S2. Electronic and free energies	(kcal/mol) of the reaction paths A-C.
--	---------------------------------------

Path A

						_											
	I-1 ₂	\rightarrow	TS1 ^A	\rightarrow	I-2	_							I-13	\rightarrow	TS1 ^A	\rightarrow	I-2
Е	0.3		21.1		-65.1	_						Е	0.8		21.1		-65.1
ΔG	0.2		20.6		-70.9	_						ΔG	0.6		20.6		-70.9
D- 41-	р																
Path	B																
	I-1 ₁	\rightarrow	TS1 ^B	\rightarrow	I-3	_							I-14	\rightarrow	TS1 ^B	\rightarrow	I-3
Е	0.6		24.1		-65.1	_						Е	0.0		24.1		-65.1
ΔG	0.6		24.4		-70.9							ΔG	0.0		24.4		-70.9
						_											
D- 41	C																
Path																	
	I-1 ₁	\rightarrow	TS1 ^C ₁	\rightarrow	I-4 ₁	\rightarrow	$TS2^{C}_{1}$	\rightarrow	I-51	\rightarrow	$TS5^{C}_{1}$	\rightarrow	I-7	\rightarrow	TS6 ^C	\rightarrow	I-3
Е	0.0		28.6		16.2		20.0		14.5		14.6		-28.6		-11.9		-34.4
ΔG	0.0		26.1		13.0		16.2		2.3		3.3		-37.2		-20.1		-40.9
	I-1 ₂	\rightarrow	$TS1^{\circ}_{2}$	\rightarrow	I-4 ₂	\rightarrow	$TS2^{C}_{2}$	\rightarrow	I-5 ₂	\rightarrow	$TS5^{\circ}_{2}$	\rightarrow	I-7	\rightarrow	TS6 ^C	\rightarrow	I-3
Е	0.8		28.9		16.5		20.0		14.4		14.6		-28.6		-11.9		-34.4
ΔG	0.6		26.1		13.0		16.0		2.2		3.2		-37.2		-20.1		-40.9
	I-13	\rightarrow	TS1 ^C ₂	\rightarrow	I-42	\rightarrow	TS2 ^C ₃	\rightarrow	I-53	\rightarrow	TS3 ^C 1	\rightarrow	I-6	\rightarrow	TS4 ^C	\rightarrow	I-2
Е	0.3		28.9		16.5		20.0		14.66		14.71		-56.3		-42.2		-65.1
ΔG	0.2		26.1		13.0		16.0		2.5		3.2		-63.8		-49.6		-70.9
			C				C				C						
	I-13	\rightarrow	$TS1^{U}_{1}$	\rightarrow	I-4 ₁	\rightarrow	$TS2^{U}_{4}$	\rightarrow	I-54	\rightarrow	$TS3^{\circ}_{2}$	\rightarrow	I-6	\rightarrow	TS4 ^C	\rightarrow	I-2
E	0.6		28.9		16.2		20.1		14.64		14.66		-56.3		-42.2		-65.1
ΔG	0.6		26.1		13.0		16.1		2.2		3.0		-63.8		-49.6		-70.9

Cartesian coordinates of all intermediates and transition states

I-14			
8			$E_{PCM} = -977.0603 E_h$ ZPE = 0.1698 E_h G ₂₉₈ = -976.9322 E_h
С	-2.55326350870345	-1.20272165639229	-1.51513024003103
С	-1.18788512085671	-0.89807367572894	-1.36640117300843
С	-0.85029805711785	0.05321178068966	-0.38335088336516
С	-1.82407350990887	0.67567125621000	0.40829337779348
С	-3.17370211206590	0.36602867891498	0.22617069262517
С	-3.53597498427766	-0.57871786562415	-0.74121556821757
Н	-2.83962014869778	-1.93998254325748	-2.26781166351322
Н	-1.51244540624006	1.39670936471343	1.16739849834761
Н	-3.93390167283076	0.85629699749736	0.83955522661248
Н	-4.58877609403753	-0.83173019375891	-0.89365663416151
Ν	0.51857059323073	0.42864596832858	-0.14961012489988
Ν	0.97307748895402	1.62245859531477	-0.56294827783831
0.42559357913042	-3.16156726221275	-3.11137132301434	
-------------------	--	--	
-0.30008267537609	-2.84786843226723	-2.45558401107250	
0.69714035670828	-0.77523217779796	-2.82712931011516	
-0.15994211024721	-1.54802960701165	-2.29219227825471	
4.58608029071743	-0.28174862994249	0.31093281317764	
4.53092502578159	1.36009823622284	1.00281620821806	
3.99698637763281	-0.04350726100139	1.97175603321741	
4.00645791786028	0.39483129044388	0.96185135492705	
1.30238107973630	-2.10792336355264	1.40888940244450	
1.51372310652394	-0.24865004569872	0.49072315381870	
2.62015042148525	0.59204450251084	0.44187216505990	
2.22769116259884	1.71951904340025	-0.21318443875016	
	2.22769116259884 2.62015042148525 1.51372310652394 1.30238107973630 4.00645791786028 3.99698637763281 4.53092502578159 4.58608029071743 -0.15994211024721 0.69714035670828 -0.30008267537609 0.42559357913042	2.227691162598841.719519043400252.620150421485250.592044502510841.51372310652394-0.248650045698721.30238107973630-2.107923363552644.006457917860280.394831290443883.99698637763281-0.043507261001394.530925025781591.360098236222844.58608029071743-0.28174862994249-0.15994211024721-1.548029607011650.69714035670828-0.77523217779796-0.30008267537609-2.847868432267230.42559357913042-3.16156726221275	

-1.30953293695908 -1.05333788704687 -0.11954319391355 0.53384951325626 0.24380925155812 -0.68480668003155 -2.02259282602407 1.27056978785029 0.74705363274693 -0.91758388066450 0.22416433337081 0.94230764130343 1.11542958097396 0.51732013402971 -0.06113017436137 -1.18945559708070 0.52361331611797 0.84598931165709 1.21083094561441 -0.48062749640867 -1.76903473211322 -1.55601072211874 -2.54622409859982

-2.98031022315683

Y	6
С	-2.61999768464748
С	-1.24039384234151
С	-0.82740153342558
С	-1.74499375564529
С	-3.10635558203364
С	-3.54238938810031
Н	-2.96659441775291
Н	-1.38539413050016
Н	-3.82262191949984
Н	-4.60683310864453
Ν	0.56260423358619
N	1.17588348022091
N	2.41910637832847
С	2.64534795467229
С	1.44361518681104
I	1.01244647735294
С	3.97745615668842
Н	3.89392601680416
Н	4.65674819485261
Н	4.43370937796465
С	-0.28321197242485
0	-0.47631009854139
Ν	0.61099644906249

1.17381652721332

$L_{PCM} = 377.0007 L_{h}$	
$ZPE = 0.1697 E_h$	
G_{298} = -976.9328 E_h	

-1	•	4	3	7	1	7	0	0	8	4	8	8	8	1	1
-1	•	3	3	6	8	4	0	3	4	3	0	9	4	8	0
-0		3	7	0	4	2	9	2	6	5	6	9	0	0	3
0		4	6	4	2	6	5	6	2	1	9	1	9	9	2
0		3	6	0	4	8	7	8	6	0	6	5	8	3	4
-0		5	9	4	2	6	2	1	6	5	3	8	1	4	4
-2		1	8	9	6	6	5	3	5	8	5	3	8	9	5
1		1	8	6	3	7	5	6	6	5	3	3	0	0	8
1		0	1	4	7	9	6	2	2	0	8	4	8	3	8
-0		6	8	5	7	1	7	7	4	7	0	2	0	9	6
-0		2	4	3	8	2	7	5	2	5	7	8	5	6	0
-1		1	9	9	5	7	9	3	6	3	0	6	5	0	8
-0		8	3	7	8	7	4	9	5	8	0	9	4	6	3
0		3	6	4	2	9	0	9	9	7	0	2	7	5	0
0		7	5	6	7	0	2	9	4	6	4	3	9	8	6
2		4	5	5	1	2	0	3	4	7	3	7	3	0	1
1		0	4	0	0	3	9	2	0	4	5	0	3	0	8
2		0	9	0	0	3	7	7	7	6	9	1	7	0	7
0	•	5	1	6	Õ	9	4	6	4	ñ	4	5	7	1	7
1	•	0	т २	6	1	0	g	6	g	1	1	1	2	6	4
-2	•	2	8	5	ģ	2	2 2	g	4	n	2	7	5	5	6
- 3	•	5	2	6	n	2	1	8	ģ	5	6	1	1	1	٥ ۵
-1	•	7	2 1	5	2	2	1 7	7	Δ	0	7	Å	5	Δ	Δ
-2	•	, Л	- 5	7	2	a	י ר	5	-ı Q	Л	י ר	5	5	л Т	-1 2
2	•	Т	J	'	')	J	J	U	Т	J	J	J	5	2

I-12

Η

$E_{PCM} = -977.0601 E_{h}$
$ZPE = 0.1698 E_{h}$
$G_{298} = -976.9321 E_h$

-1.52713440379349 -1.38126443143951 -0.38465934337591 0.41653752548579 0.23052561527057 -0.74774977077445 -2.28219039850163

Н	-1.50744861283931	1.38578778882399	1.18673045940719
Н	-3.92481766476434	0.83814884655382	0.85177259741829
Н	-4.57175956570434	-0.83360323991508	-0.90139488213766
Ν	0.52943947526017	0.44751949351535	-0.13993939157247
Ν	0.97891968662688	1.65301602318150	-0.52457221744811
Ν	2.23033181965102	1.75085712248582	-0.16342860076451
С	2.62607820683072	0.61157728378030	0.46879149556601
С	1.52482465650576	-0.23677482614336	0.49216492569233
I	1.32183075063993	-2.12055055501349	1.36064898014616
С	4.00968015628430	0.41217790312530	0.99513983335600
Н	3.99474221688528	-0.03153699934596	2.00273112995234
Н	4.53303452052142	1.37760934898341	1.04463183042995
Н	4.59338494449892	-0.26071742082335	0.34417006127077
С	-0.16964245186276	-1.56729944369454	-2.29915592589744
0	-0.28821394288640	-2.83261814363778	-2.38021114091128
Ν	0.67578465198626	-0.78563460658862	-2.93588695795536
Н	1.26121624173954	-1.38089231445811	-3.53501168642357

I-1₁

С	-2.62183386610771
С	-1.24430344271578
С	-0.83253784101145
С	-1.74862481861860
С	-3.11037749382205
С	-3.54466735786683
Н	-2.96622081913355
Н	-1.38931853892961
Н	-3.82647078700813
Н	-4.60832675386010
Ν	0.55705589985804
Ν	1.16543431912194
Ν	2.40976223897893
С	2.64168903861759
С	1.44222568966596
I	1.01871908008231
С	3.97638583784177
Н	3.89766524914335
Н	4.65592727240811
Н	4.42944171083863
С	-0.25434096430492
0	0.67637301910389
N	-0.49565497452577
Н	0.21887474924399

-1.27559239715698
-1.01268328857753
-0.10253541204804
0.52663402558249
0.23367417715487
-0.67380008795598
-1.97529620218753
1.24796545889939
0.71793260786616
-0.90959829126321
0.24228614165023
0.98278069392404
1.15001846181875
0.52387050943878
-0.06461459837751
-1.23468851882556
0.51606911289647
0.82424640059116
1.20846845269579
-0.48940223959252
-1.74296332395293
-2.38323238445251
-1.64518833233022

-2.19132410879762

-1	.4	6	4	5	8	2	9	7	8	8	7	2	2	3
-1	. 3	6	6	1	2	0	9	1	7	5	7	9	7	5
-0	.3	7	4	4	6	2	5	8	6	2	7	8	7	9
0	.4	7	7	4	1	3	2	9	6	0	7	9	2	1
0	. 3	7	0	5	0	6	8	4	2	8	1	9	7	6
-0	. 6	0	3	2	1	7	4	0	5	1	9	0	0	7
-2	. 2	2	9	5	5	2	3	1	1	4	2	6	4	4
1	.2	1	5	0	0	8	5	3	6	2	8	1	5	0
1	.0	3	9	2	1	0	5	2	9	3	5	4	7	2
-0	. 6	9	6	5	7	5	6	5	5	0	2	1	4	3
-0	. 2	4	4	6	5	8	9	8	4	7	5	6	8	8
-1	.1	8	5	9	4	8	6	1	2	9	9	6	4	8
-0	. 8	2	4	8	9	4	9	3	7	9	8	4	0	1
0	. 3	6	1	7	8	8	1	3	2	2	1	3	1	4
0	.7	4	5	7	1	0	3	6	5	4	5	2	0	3
2	. 4	1	7	5	7	5	2	7	2	0	2	9	6	8
1	.0	3	2	4	4	5	8	5	0	7	1	4	8	6
2	.0	8	7	1	3	2	3	8	0	6	5	3	5	5
0	.5	1	5	6	9	5	3	3	7	5	9	0	1	2
1	.0	1	3	1	0	9	2	0	2	2	7	3	7	2
-2	.2	6	9	6	4	3	0	6	0	1	3	7	4	9
-1	.6	8	4	0	4	0	6	7	9	7	2	1	1	0
-3	.5	6	0	1	9	6	7	7	4	9	8	0	3	7
-4	.0	5	7	2	3	9	8	9	0	5	1	7	2	4

$$\begin{split} E_{PCM} &= -977.0277 \ E_h \\ ZPE &= 0.1685 \ E_h \\ G_{298} &= -976.9003 \ E_h \end{split}$$

$$\begin{split} E_{\text{PCM}} &= -977.0613 \ E_{\text{h}} \\ \text{ZPE} &= 0.1698 \ E_{\text{h}} \\ \text{G}_{298} &= -976.9331 \ E_{\text{h}} \end{split}$$

-1.46458297887223 -1.36612091757975 -0.37446258627879

-1.27559239715698

-0.10253541204804

-1.01268328857753

С	-1.74862481861860
С	-3.11037749382205
С	-3.54466735786683
Н	-2.96622081913355
Н	-1.38931853892961
Н	-3.82647078700813
Н	-4.60832675386010
Ν	0.55705589985804
N	1.16543431912194
Ν	2.40976223897893
С	2.64168903861759
С	1.44222568966596
I	1.01871908008231
С	3.97638583784177
Н	3.89766524914335
Н	4.65592727240811
Н	4.42944171083863
С	-0.25434096430492
0	0.67637301910389
N	-0.49565497452577
Н	0.21887474924399

0.52663402558249 0.23367417715487 -0.67380008795598 -1.975296202187531.24796545889939 0.71793260786616 -0.909598291263210.24228614165023 0.98278069392404 1.15001846181875 0.52387050943878 -0.06461459837751 -1.23468851882556 0.51606911289647 0.82424640059116 1.20846845269579 -0.48940223959252 -1.74296332395293 -2.38323238445251 -1.64518833233022

-2.19132410879762

-1.26880924888389

0.47741329607921 0.37050684281976 -0.60321740519007-2.229552311426441.21500853628150 1.03921052935472 -0.69657565502143-0.24465898475688 -1.18594861299648-0.82489493798401 0.36178813221314 0.74571036545203 2.41757527202968 1.03244585071486 2.08713238065355 0.51569533759012 1.01310920227372 -2.26964306013749 -1.68404067972110 -3.56019677498037 -4.05723989051724

TS1^B

С	-2.48311137162639
С	-1.15765367804832
С	-0.96185610012376
С	-2.04406103105152
С	-3.34662055051068
С	-3.56677370689365
Н	-2.64859237223582
Н	-1.85232782634733
Н	-4.19121491991983
Н	-4.58606419603802
N	0.35716849317920
N	0.80571854587395
N	2.10192145883827
С	2.53696003824910
С	1.39841335446313
I	1.27056157951875
С	3.97772715186372
Н	4.15260610273080
Н	4.58730108023472
Н	4.34976942475421
С	-0.00256652775698
0	1.21867484778918
N	-0.26610506173431
Н	0.61311726479159

-	•0.	9	2	1	3	8	1	3	6	1	1	1	0	0	6	
	Ο.	1	4	9	0	7	4	1	4	4	9	2	0	2	2	
	Ο.	8	6	4	2	5	0	7	1	1	4	7	9	8	9	
	Ο.	5	0	8	0	5	4	1	7	7	4	6	0	5	5	
_	0.	5	6	8	7	8	7	9	5	3	0	9	5	3	6	
_	-2.	0	9	7	3	2	3	3	6	5	9	0	6	2	9	
	1.	6	8	6	1	7	3	1	4	5	3	2	7	6	7	
	1.	0	6	1	7	9	1	7	5	0	9	7	3	7	6	
_	0.	8	6	0	4	4	2	0	2	9	0	6	6	3	8	
	Ο.	5	0	5	6	8	8	3	9	4	7	7	1	7	5	
	1.	8	1	8	2	5	0	6	4	3	6	4	4	6	7	
	1.	7	5	1	0	8	1	8	4	1	3	4	9	6	5	
	0.	4	6	5	6	0	6	5	9	8	4	1	5	2	8	
_	0.	3	6	3	1	5	7	2	2	0	0	2	0	1	0	
_	-2.	2	0	2	4	1	6	9	7	0	6	0	6	4	7	
	Ο.	0	9	1	6	2	8	3	2	5	5	2	4	2	7	
_	0.	5	6	0	3	3	9	0	7	3	0	6	7	8	3	
	Ο.	9	9	9	0	9	2	9	9	9	0	5	2	9	0	
_	0.	4	4	8	7	4	3	5	0	6	9	2	2	7	4	
_	-1.	6	4	0	1	8	5	7	7	5	8	3	3	3	9	
_	-1.	3	7	1	2	3	7	0	5	8	2	8	0	4	1	
_	-2.	4	7	5	9	7	0	7	0	9	1	5	1	8	9	
_	2.	8	8	7	7	6	0	4	6	0	3	1	5	8	1	

 $E_{PCM} = -977.0228 E_{h}$ $ZPE = 0.1690 E_{h}$ G₂₉₈ = -976.8943 E_h

> -1.41568615015243 -1.09559491737798 -0.19656677830799 0.33628457234416 -0.01296090460153 -0.88419893233795 -2.10526195456692 1.02817429857024 0.40552714552984 -1.14993682942559 0.15349037933017 0.14899457495711 0.24234458693776 0.29524000711811 0.21917677038823 1.57176474109312 0.42342020519796 1.29681883451696 0.54701656260352 -0.46464611524792 -1.75422896412128 -1.35742725955936 -2.71376719087866 -3.04392168200953

С	-3.32939986300302
С	-2.13924012013509
С	-1.10283615382549
С	-1.24505229836171
С	-2.45581527172457
С	-3.49186946062511
Н	-4.14343410419893
Н	-2.00670327256199
Н	-2.56319121764700
Н	-4.43031635497961
Ν	0.12032201629113
Ν	0.46505278196813
Ν	1.67694255771948
С	2.15585037252843
С	1.14093200872020
С	-0.14722070070613
0	-0.21882896452038
N	0.99509232995382
C	3.51558352435889
Н	4.10829386350475
Н	3.45965943159196

 $E_{PCM} = -679.2743 E_h$ ZPE = 0.1731 E_h $G_{298} = -679.1386 E_h$

1.36662620117838 1.32127434985787 0.49657812627888 -0.28180230181069 -0.21587059776493 0.60093906201534 2.00689435317940 1.91163456077907 -0.81852562598330 0.64617171859913 0.39727304421619 1.05113896066522 0.67193833406250 -0.22237641744427 -0.40166069500737 -1.16072939722126 -1.85388399077570 -1.15485631588270 -0.83742206957890 -0.62763050442093 -1.93288651421532

-0.42842428257515

-1.74849999815148

1.44191772663685

1.38461958730991

0.57641537130115

-0.17741084710009

-0.10091452373473

0.70172196511144

2.07006978511812

1.95393308174649

0.75311750497463

0.46364681897175

1.08517323512523

0.70079324076974

-0.17069689423713

-0.31941599382673

-1.03120054532874

-1.73192070106034

-0.68163026944516

-	0	•	7	5	3	5	9	0	9	1	3	8	4	5	5	5
_	0		0	2	8	5	9	0	3	1	8	9	6	7	4	8
_	0		4	8	3	6	4	3	0	1	8	0	5	8	8	7
_	1		6	5	4	6	4	7	4	7	2	3	7	0	5	9
_	2		3	6	5	8	6	2	3	5	3	8	5	3	4	8
_	1		9	2	1	1	0	5	4	6	7	9	1	5	2	7
_	0		4	0	4	4	2	8	2	6	7	7	6	1	6	5
	0		8	7	8	2	6	7	9	6	6	8	1	9	9	7
_	3		2	6	9	6	9	7	9	5	6	8	3	4	4	2
_	2		4	7	8	3	5	5	6	4	2	7	7	9	7	1
	0		1	9	5	1	2	7	1	4	8	6	8	2	9	2
	1		3	3	1	6	8	5	5	3	8	9	1	9	3	8
	1		6	2	6	9	8	2	8	6	4	9	2	0	5	6
	0		7	1	6	6	3	9	6	8	1	5	5	0	7	4
_	0		2	1	9	3	4	0	8	7	0	5	8	7	2	9
_	2		1	3	6	9	0	2	6	0	2	6	5	4	8	9
_	3		1	4	8	6	5	5	5	9	7	7	3	6	7	8
_	1		3	5	8	9	7	6	5	4	8	3	5	3	8	8
	0		7	9	5	0	2	6	7	8	5	3	9	7	3	4
_	0		1	1	0	7	4	5	5	7	0	5	9	1	7	6
	0		9	0	9	5	6	7	0	3	8	1	1	3	4	7
	1		6	6	1	3	9	9	2	1	2	8	9	3	1	0
_	1		6	6	1	0	5	3	6	3	4	9	8	5	8	3

I-3

Ν

Η

Η

0.05250526998465

4.05435233214198

$E_{PCM} = -679.2254$	${\sf E}_{\sf h}$
ZPE = 0.1719 E _h	
$G_{298} = -679.0909$	E _h

-0.06188282586618
0.67639611597198
0.21342820364020
-0.97312124983461
-1.69738941566653
-1.24677974439087
0.29054176221196
1.59826170813120
-2.61590502511011
-1.81746685340478
0.89768521168350
2.04562793316395
2.32615630159996
1.38628337834882
0.46286226787408
-1.44628125826893
-2.50199135848667

			$E_{PCM} = -977.0157 E_{h}$
TS1 ^C ₁	-		
Н	0.82883819708695	-2.72963597497096	-3.19361627576410
Ν	0.23972305923509	-2.49524588980758	-2.38391210506516
0	-0.23516796962563	-0.59977493620164	-3.65617870410100
С	-0.34010960378408	-1.33853312680003	-2.62310393308547
Н	4.29575294242446	-1.02681427470999	1.32099898900080
Н	4.81579074378202	0.64925237513460	1.02242925139398
Н	3.80375314911090	0.27168114686236	2.43698166377101
С	3.98063054458093	0.02839135392009	1.37649157908675
I	1.04432330185485	-1.67082400016209	2.15519852124471
С	1.44023659953192	-0.24223763519227	0.59930160137658
С	2.77583637704568	0.30098621019540	0.53163199775101
Ν	2.77979963553845	1.14583610775216	-0.50645584564763
Ν	1.94012903939891	1.46653037927608	-1.26187994872262
N	0.57305860462023	0.12314214661677	-0.26754440781570
Н	-4.63252755413501	-0.69274940199109	-0.82874212852864
Н	-3.76356866466192	0.56129297399340	1.15978728641263
Н	-1.31093695505354	0.92781595622825	1.41230315212437
Н	-3.04217542731312	-1.55775650099567	-2.53490941075821
С	-3.55840959390086	-0.52950756727586	-0.70563313882265
С	-3.07329662610043	0.16939147837243	0.40778652738196
С	-1.69995372372933	0.37147165486221	0.55609946861745
С	-0.79612821002736	-0.13026565906062	-0.40321163570579
С	-1.27703983603282	-0.82646896889237	-1.53608238389805
C	-2.66232402984632	-1.01531984715356	-1.66406912024625
,			
ľ			G ₂₉₈ = -976.8916 E _h
			$ZPE = 0.1661 E_{h}$
	Ϋ́`		$E_{PCM} = -977.0152 E_{h}$
	<i>~</i> .		
TS1 ^C 2			
			G ₂₉₈ = -297.9075 E _h
ľ			$E_{PCM} = -297.8907 E_{h}$
		2.21000900001101	2.01097202077000
л Н	4.49009010007200 0 92465944094860	-0.00023/0320/13/ -2 24863968504181	1.412342/4333065 -2 64897282677536
H	3.83169394329549	-1.3/523583893213	2.3520462//43/39
H	3.8/00869108991/	-1.448/38155/0111	0.5/0/6105/93691
С	3.71588085368698	-0.78362480160174	1.43224451144496
0	1.24466456036268	-1.04789042838424	-0.66141491719756

Y	
С	-2.65040894533190
С	-1.26461676714997
С	-0.78630120839906
С	-1.69258333699013
С	-3.06633565957331
С	-3.54904281883499
Н	-3.02774767395831
Н	-1.30564865999662
Н	-3.75757099740328

$$\begin{split} E_{PCM} &= -977.0157 \ E_h \\ ZPE &= 0.1663 \ E_h \\ G_{298} &= -976.8916 \ E_h \end{split}$$

-1.70183853821547 -1.56300670809330 -0.39836608999168 0.57525421561584 0.41693758707007 -0.72470922469799 -2.59799502706796 1.44960485063552 1.18215430130417

-0.94844416704027

-0.77175535044907

-0.12457661689596

0.34220114922037

0.14704590308620

-0.50458645862517

-1.44829834035594

0.87097317640551

Н	-4.62308895760880
N	0.57974969951697
N	1.93857112955190
Ν	2.77988088931795
С	2.78034505387088
С	1.44748171486424
I	1.06046799171001
С	3.98477929123323
Н	3.81076444909446
Н	4.82242539757388
Н	4.29466445829847
С	-0.31558624624244
0	0.45518988191084
N	-0.41753993606995
Н	0.25312116361594

-0.65992520226898-0.85854467967146 0.13403128142031 -0.24961716299608 1.50183899117329 -1.218883972059341.17394209676082 -0.467781906923950.31006160039226 0.55407738761750 -0.242377144506130.61088418825544 -1.70476177011752 2.13740388565149 1.39751750617454 0.03157844394888 0.27475581834454 2.45867945003667 0.64864157946654 1.04271075918161 -1.02496091277812 1.34058531529310 -1.31719332901222 -2.62294551974191 -2.26374572503416 -2.25871232439192 -0.76349171315857 -3.81408274977184 -1.23043857320831 -4.43789765421305

> $E_{PCM} = -977.0355 E_h$ ZPE = 0.1665 E_h G₂₉₈ = -976.9124 E_h

-1.67343390119116
-1.58532793807264
-0.44037809836981
0 559901/0387970
0.0000000000000000
0.44829659612059
-0.66829767467979
-2.55296009848620
1.41461475069670
1,23195754622976
-0 76359771975868
0.70555771575000
-0.35589108695615
-1.22929464035058
-0.42274845676417
0.50780969060842
0.49891484631500
2 22509913299140
2.22303313233140
1.42443/4693/151
2.47174357785703
1.12995013372131
1.36526822213882
-2.67599533684187
-2 35012456432110
2.00012400402110
-3.04990260009634
-4.49631819613757

$E_{PCM} = -977.0350 E_{h}$
$ZPE = 0.1664 E_{h}$
$G_{298} = -976.9124 E_h$

-1.62397819833832
-1.55285879187914
-0.44189426727543
0.54381512545061
0.44413122303710

|--|

- - - - - -

C	-2./3114851568635
С	-1.34686259294781
С	-0.83849859868596
С	-1.71965171832535
С	-3.09468212364293
С	-3.60425156236408
Н	-3.12945650519925
Н	-1.31620102869440
Н	-3.76644978100617
Н	-4.67912274973032
N	0.52435366318897
N	3.18568287755452
N	2.99240636549354
С	2.75960137158034
С	1.40291851721804
I	0.99500594804795
С	3.90178895760278
Н	3.67268611503274
Н	4.80456515595786
Н	4.12627069000443
С	-0.42005711268961
0	0.35423316358814
N	-0.53882512631583
Н	0.12174326431717

I-4 ₂	
С	-2.73553128095494
С	-1.35417260448817
С	-0.84722338578319
С	-1.72762195400811
С	-3.10130173926068

-1.11592938983972 -0.88216888490551 -0.16818449269224 0.32341661879733 0.08961759265756

-1.03555302552975 -0.82591660593055 -0.16528055249899 0.29369173203623 0.07247521784607 -0.60119720275763 -1.54887415175920 0.84102648579206 0.43369535557856 -0.77768678332780 0.11783743714418 2.05115194209800 1.27566831812198 0.37828705327900 -0.14086418935857 -1.54337372618570 0.00798766335248 0.26007833927339 0.56157050135347 -1.06847814757226 -1.34678683122093 -2.30485236721158 -0.76057594043961 -1.21102001874471

С	-3.60908138036474
Н	-3.13249807900527
Н	-1.32486723877297
Н	-3.77379818441493
Н	-4.68266610754332
N	0.51831336707510
N	3.19582581004692
N	2.99738221522828
С	2.75719354776330
С	1.39649916966052
I	0.97623790906113
С	3.89480532753405
Н	3.66253534973217
Н	4.80093468152304
Н	4.11527303400656
С	-0.43978665113895
0	-0.28350608785434
N	0.07097198765967
Н	0.65171139122578

-0.63851735399978 -1.679938334228470.90076382540183 0.47890047979011 -0.829058841556470.10970818913952 1.99042287347844 1.24071525629164 0.37167842692447 -0.13584849524407 -1.49054877086307 0.01883630016769 0.29733861780779 0.56159072094980 -1.05964413035635 -1.35795468005103 -0.54477376672034 -2.56201597666574

-2.76280472603947

-0.97063047169178

-0.94929928921367 -0.33333084620070 0.25212794222143 0.20833242119819 -0.40786093821964 -1.43871272688938 0.73879643220587 0.65741633773399 -0.44351753343457 -0.26661202483068 2.35609062068568 1.40814367242048 0.29591584587126 -0.21967012840621 -1.62631236521539 -0.24787897560158 0.01434165872106 0.16744838990970 -1.34178624830520 -1.60893444723374 -2.58966506108010 -1.09218753663534 -0.63932905061567 -2.47325306160706 1.37888279823939 1.21351556247587 -0.72148110951628 -0.37121542371082 -1.30105512038500 -0.47190620905381 0.48376968858415 0.48871614423460 2.24972893284004 1.41293627743573 2.45284373654476 1.10885849726112 1.38110061997871 -2.67490852971364 -3.64360433320674 -2.52944627637036 -3.35425238495953

$$\begin{split} E_{PCM} &= -977.0295 \ E_h \\ ZPE &= 0.1660 \ E_h \\ G_{298} &= -976.9073 \ E_h \end{split}$$

-1.75921026356488
-1.58110513873503
-0.40801423691847
0.54154480511987
0.33694537778656
-0.81354455648234
-2.65828525518952
1.42170653948193
1.07171108298844
-0.97868243314651
-0.20269534467959
-0.68144921662207
-0.09540583286598
0.60070297131942
0.46568844185868
2.93084614476984
1.40721799878728
2.47225619440006
1.02182133278486
1.31434950418451
-2.59272662033405
-2.16180259605791
-3.80197307007881
-4.39534882880626

×	
С	-2.74221766716202
С	-1.35219990397865

TS2^c₁

0	1.00210000000000
С	-0.85215973667744
С	-1.71744388432374
С	-3.09495915964064
С	-3.60741353008909
Н	-3.15019829878266
Н	-1.29322026980414
Н	-3.76793753414071
Н	-4.68764857162405
Ν	0.50717769494160
Ν	3.17800571148002
Ν	2.99579005905403
С	2.80131688458394
С	1.49523665744720
I	1.00980946659087
С	3.95691929670725
Н	3.86264791240807
Н	4.89917051913321
Н	3.99411445981890
С	-0.42246655632008
0	0.26421982047419
N	-0.45702933627486
Н	0.19329596617881

-1.62260072800968

×	
С	-2.69192008997823
С	-1.30358609217901
С	-0.82690301596496
С	-1.71398213824232
С	-3.08906955669733
С	-3.57812421796576
Н	-3.08085188082360
Н	-1.30787403844811
Н	-3.77802946859868
Н	-4.65616049044439
Ν	0.52563783564161
Ν	3.08617207640397
N	2.95594461098767
С	2.82275736405546
C	1.53306504267322
I	1.22366010572310
С	4.02113833510011
H	3.91237265017459
Н	4.92473126025677
H	4.14/3516/6/4400
С	-0.3511462804/114
U	0.4609524/1362/0
N	-U.496213361//929
Н	0.1828184/446964

TS2^C₃

TS2^C

С	-1.32315223256562
С	-0.82143794131331
С	-1.68938330173198
С	-3.06706669883768
С	-3.58069821682958
Н	-3.12565772362035
Н	-1.26568126380005
H	-3.74133685592018
Н	-4.66204501824914
N	0.53843099166170
N	3.04665799115473
N	2.92995397500736
С	2.81350897342368
С	1.53309462548903
I	1.17026432999009
С	4.01751352104513
Н	3.95065560352157
Н	4.92846400376698
Н	4.09455540387041

-0		9	8	3	8	5	0	5	5	8	9	3	1	2	4	
-0		8	5	3	0	6	5	7	5	8	3	1	4	3	4	
-0	·	1	5	6	х х	х х	Δ	א	7	Δ	с २	2	7	7	â	
0	•	エ つ	0	7	6	5	-	0	' 2	ュ つ	1	2	' 2	'n	2	
0	•	2	2 C	/	0	2	0	2	2	~	⊥ ⊥	/	2	0	2	
0	•	2	6	4	2	6	3	4	4	9	9	4	6	8	6	
-0	•	4	2	8	0	0	1	0	8	4	3	9	1	9	2	
-1	•	5	2	6	0	8	5	0	9	2	4	7	3	7	0	
0	•	9	2	4	7	0	8	1	4	1	2	9	0	3	0	
0	•	6	9	7	5	6	2	1	0	7	3	7	7	4	7	
-0		5	3	5	4	4	5	4	4	3	0	0	0	5	2	
-0		0	2	1	3	3	1	0	7	4	3	5	7	4	6	
2		6	2	0	9	1	6	7	7	8	9	5	7	7	8	
1	·	6	q	Ř	5	1	5	7	Ŕ	х х	2	х х	Ĺ	א	5	
	•	6	1	a	0	т а	2	, Л	0	л	2	5	2	2	0	
0	•	0	1	2	0	2	~	4	0	4	2	5	っ っ	2	U E	
0	•	0	4	4	8	4	8	2	0	3	3	С С	2	3	с С	
-1	•	4	4	8	0	6	/	5	T	0	/	0	6	0	9	
0	•	1	6	6	4	5	5	3	1	1	4	7	6	6	1	
0	•	4	2	0	3	0	9	2	7	1	1	1	3	5	0	
0	•	6	5	7	2	2	9	7	9	4	0	1	6	6	1	
-0		9	2	1	0	3	2	9	4	0	5	1	1	8	4	
-1		4	0	4	0	7	0	3	0	0	0	1	1	7	2	
-0		5	6	9	9	1	2	9	6	1	0	0	1	9	6	
-2	-	6	8	3	9	9	7	8	7	6	5	5	8	9	g	
-2	•	a	2 2	2 2	7	Δ	ĥ	5	'n	6	6	0	Δ	Δ	7	
_	٠	~	\mathcal{I}	\mathcal{I}	/	-1	U	J	U	U	U	U	-1	-1	/	

-0.91869999245327 -0.83721445311256 -0.19165034286401 0.35787860743895 0.25062288573711 -0.39315236511596 -1.40724749309781 0.86530759757994 0.67119488137463 -0.47998854310101 -0.06150527167507 2.71422564654988 1.74859793813366 0.61657583581893 0.03400897931382 -1.38434230319480 0.12208762308714 0.38242545367085 0.57344372937271

E_{PCM} = -977.0294 E_h $ZPE = 0.1659 E_h$ G₂₉₈ = -976.9076 E_h

-1.85353664970541
-1.71149364822946
-0.57348954459516
0.37483724812298
0.19326910601391
-0 92338069731463
-2 71838896429161
1 2/03/003318502
0.00071607700110
0.922/168//89119
-1.07062249983885
-0.37259708475968
-1.05649532255242
-0.41727036937296
0.34147077579222
0.26355549721704
2.66337849737917
1.14097639490723
2 20646277610624
0 75209585804540
1 04772005400404
1.04773985490690
-2./664229980/10/
-3.28043095823638
-3.03649717612722
-3.76626228747330

E_{PCM} = -977.0290 E_h ZPE = 0.1658 E_h $G_{298} = -976.9072 E_h$

-1.89042119686805
-1.74529749871353
-0.59039564297169
0.38017433635964
0.21090781120863
-0.92540115378706
-2.77828845664905
1.24880878265741
0.96120734029142
-1.06147831174645
-0.41980211944942
-0.91094732279393
-0.33693141670512
0.34404125377695
0.23538183907469
2.70007437704018
1.11038947997746
2.17808091363477
0.69148305062676
1.01705560162293

-0.96960999027360

C O N H	-0.40972470558939 -0.46485973999535 0.30962696933262 0.86461758819063	-1.39237127425110 -0.78867960130631 -2.43821890536024 -2.72424108527188	-2.83137638872398 -3.95057597252928 -2.49097293053202 -3.30770798380123
TS2 ^c			$E_{PCM} = -977.0293 E_h$ ZPE = 0.1658 E_h $G_{298} = -976.9075 E_h$
ССССССНННИ И И И ССІСННИ СОИН	-2.66508361103025 -1.27814642243695 -0.80514409725603 -1.69484334820282 -3.06797813638957 -3.55290646874200 -3.05355415754887 -1.29319832044692 -3.76140137383909 -4.63056444056306 0.55168163151863 3.11424930938481 2.97585632859883 2.83490206670742 1.54903544551042 1.17129607480086 4.02430105976315 3.92728952662085 4.94012807230827 4.11674728064710 -0.31825915605249 -0.05842794436333 0.11420854940240 0.74088028260860	$\begin{array}{c} -0.93458098841471\\ -0.81007895607025\\ -0.15747339214796\\ 0.37167294462566\\ 0.24075231422712\\ -0.41502166979847\\ -1.44081972585434\\ 0.87987905028594\\ 0.64966231629121\\ -0.51691414817790\\ -0.02560432940262\\ 2.67699374050861\\ 1.73364105446454\\ 0.62708812773096\\ 0.05813349964038\\ -1.37213536162543\\ 0.14442198894905\\ 0.40511696094317\\ 0.60630528342956\\ -0.94654203660339\\ -1.40811520645202\\ -2.64376176494365\\ -0.57749560866530\\ -1.09332715694015 \end{array}$	$\begin{array}{c} -1.89299342951912\\ -1.73366980717226\\ -0.57148861606326\\ 0.38946236184829\\ 0.19744048054182\\ -0.94456971091045\\ -2.78088922580581\\ 1.26809150072093\\ 0.93652273961700\\ -1.09820767985978\\ -0.38297475501850\\ -0.94553591629695\\ -0.34087508297426\\ 0.37763825832873\\ 0.26905532560900\\ 2.73419071630577\\ 1.17377987691156\\ 2.23882856610522\\ 0.77787582905090\\ 1.08374036736383\\ -2.75476804190614\\ -2.59958773819172\\ -3.67578378682397\\ -4.30701211386083\end{array}$
I-51			$E_{PCM} = -679.1476 E_h$ ZPE = 0.1663 E_h $G_{298} = -679.0220 E_h$
ОСССССННННИ МИССС	 -2.66735589935017 -1.29888175990424 -0.93848701310266 -1.89721676648176 -3.24604191570653 -3.62748998003929 -2.97799386937578 -1.56623416885418 -3.99771415834108 -4.68547804972046 0.38666828858211 3.94689785487795 3.42467859209688 2.87272551277452 1.52167082806450 3.73254867874807 	-1.09956382181542 -0.87027800928012 -0.13590908565076 0.35139920158281 0.09370558373343 -0.63509219121877 -1.65923453639592 0.92516032393875 0.46077808626577 -0.84075290906005 0.14331749575999 2.53019026344222 1.62155911999651 0.52340932631111 0.34805413516009 -0.43466290283340	-1.72838677909551 -1.52681780514920 -0.37054928080132 0.54038823166003 0.31282581096621 -0.82312824200572 -2.61296676039073 1.40849401127853 1.01550310762481 -1.00671792464121 -0.11912636325885 -0.62363511940514 -0.21615044509542 0.29354636908129 0.04515652683025 1.09761368330400

S45

Н	4.12861008770913	0.05743888019305	1.99923027160567
Н	4.56780157938579	-0.81298283115031	0.48862748606154
Н	3.10868792867415	-1.28467188495512	1.40488054248260
С	-0.25199508040631	-1.42856293802162	-2.48585615552918
0	0.69561222096737	-2.08976059330679	-1.95470075563387
Ν	-0.46873370793241	-1.16521490994052	-3.75559036626200
Η	0.28834379733454	-1.59246680275495	-4.30317004362680
I-5 ₂			
			$E_{PCM} = -679.1476 E_{h}$
			ZPE = 0.1663 E _h
			G ₂₉₈ = -679.0221 E _b
			250
	8		
С	-2.61421357628201	-1.11082405469309	-1.80499523520586
C	-1.26203830495794	-0.78889896556086	-1.62157251182974
С	-0.94587719595187	0.02895437447403	-0.50893523813740
С	-1.92991755509421	0.49883776643890	0.38344057787076
С	-3.26379964290614	0.16733901806834	0.16250548488611
С	-3.60254256875104	-0.63659069129506	-0.93565273266341
Н	-2.88969196286806	-1.74306572600559	-2.65166538342663
Н	-1.62963568202086	1.11359131585017	1.23450178943072
Н	-4.03650896631927	0.53106058683804	0.84376192488160
Н	-4.64865482472675	-0.89954745886963	-1.11419546417711
N	0.36537547063691	0.36907428816815	-0.25858146409164
N	3.80187182351994	2.86574364702465	-0.98998870365894
N	3.33633754897589	1.94720181388303	-0.53866919768235
С	2.85343960146188	0.84280645918743	0.02572329550642
С	1.50141650385679	0.60861804884212	-0.15755900692982
С	3.79299293802305	-0.07224543743554	0.78965033415090
Н	4.34345726065767	0.49261784017591	1.55704103307170
Н	4.50832640391895	-0.55905159534919	0.10864162354238
Н	3.19459443710569	-0.84752029513215	1.28681756789964
С	-0.19356936315973	-1.25981870528159	-2.60342134077043
0	0.57562216225174	-0.35865216051439	-3.06562584778530
Ν	-0.20771078528419	-2.54892692376399	-2.86013347447586
Н	0.54458227791358	-2.74873114504972	-3.53076003040571
I-5₃			
9			F = -679 1472 F.
			7DE = 0.1662 E
			$2FL = 0.1003 L_h$
			$G_{298} = -679.0216 E_h$
	K S		
C		1 05512070442471	1 02007100610004
C	-2.6612/869169254	-1.055138/24434/1	-1.8380/128618804
C	-1.295384268/4244	-0.78359495545672	-1.66/31014422001
C	-U.9303/03131332/ _1 80252200/7705/	-0.008238/4113330 0.46021172452712	-0.3333006661000
C	-1.072J22UU4//UJ4 _3 2352Q3Q235Q6/2	U.4UOZII/3432/13 0 16100/0/221675	U.JOZZZU80001898 A 18883679049850
C	-3.616/78003771/2	-0 60521632577702	U.109000/2042909 -0 0005606000011/
ч	-J.0104/0333//144 -2 07263351323000	-0.00524052577702	-0.922J0209099414 -2 708/1007688300
Н	-1 56324898853060	1 073751302306/1	2 · / 0041 JU / 0003 JJ 1 2291 81 56/ 58/ 89
н	-3 98434034195762	0 52011880635795	0 89945584727720
н	-4 67062688507385	-0 84950644600161	-1 07861619098737
N	0.38289849646934	0.32359712019129	-0.31958873730163
N	3.81849756664006	2.87354093576514	-0.88890883628966
N	3.34975362027120	1.93535221436936	-0.48310524728870
С	2.86385214333856	0.80167063687786	0.01494385386173

S46

C 1.51212406681016 0.57627246260326 -0.18731629770689

C H H C O N H	3.78391313176884 3.97907099935453 4.73764612033580 3.30092178662803 -0.28898889892089 -0.55935406797363 0.72414114160925 1.31218081817734	-0.12445083674057 0.26497652190900 -0.24687539479625 -1.10747904497556 -1.28834531009128 -1.00894824840997 -1.96833941527855 -2.27405959666182	0.78948383347365 1.80125441333899 0.25494862861008 0.87247628365025 -2.69683722730731 -3.90723648016489 -2.20881990471456 -2.99398953607870
I-54			$E_{PCM} = -679.1473E_{h}$ ZPE = 0.1662 E_{h} $G_{298} = -679.0221 E_{h}$
СССССННННИ И И СССНННСОИ Н	-2.60902570897201 -1.25634113636807 -0.93416903426282 -1.91592517020107 -3.24917233155614 -3.59307987132640 -2.88765815636328 -1.61216014319729 -4.01860468997547 -4.63959597742386 0.37582147535501 3.81255261382392 3.34555830414546 2.86042238176445 1.51030297957360 3.79578268453083 4.33815127657331 4.51840672091525 3.19520882643580 -0.21405878406727 -0.24090971660620 0.57216096728694 1.20809008491531	$\begin{array}{c} -1.07814310493151\\ -0.75081934065584\\ 0.03635703349971\\ 0.48032432899191\\ 0.15159753761114\\ -0.62699239344471\\ -1.69730316675380\\ 1.07313820764517\\ 0.49504118242288\\ -0.88810257097376\\ 0.37621313619613\\ 2.87857866935245\\ 1.96021855903416\\ 0.85685218422803\\ 0.61906075127312\\ -0.05207761774358\\ 0.51772374453032\\ -0.54036363627582\\ -0.82654183546349\\ -1.27407185871878\\ -2.52821913618143\\ -0.36270903122709\\ -0.82983281041523\end{array}$	$\begin{array}{c} -1.82277718552058\\ -1.64434132080693\\ -0.51255632195724\\ 0.39818375950142\\ 0.17713617480513\\ -0.93895235159423\\ -2.67860618219626\\ 1.26346593604989\\ 0.87250524696197\\ -1.11752856897114\\ -0.25792370815616\\ -0.97118028841346\\ -0.52092547031586\\ 0.04334195546149\\ -0.14961667348052\\ 0.81956810120090\\ 1.58910005588854\\ 0.14731231837594\\ 1.31541333530297\\ -2.62825743959699\\ -2.83458493732951\\ -3.15541887728750\\ -3.81361618792187\end{array}$
TS5 ^c 1			$E_{PCM} = -679.1473 E_h$ ZPE = 0.1662 E_h G ₂₉₈ = -679.0203 E_h
С С С С С С Н Н Н Н N N N С	-2.40629159271811 -1.11002717889840 -0.94589363759476 -2.02229014786913 -3.29299401658441 -3.48050724359639 -2.56383749606786 -1.84052588179146 -4.13278681668546 -4.47434947347095 0.30129043788875 3.76833022546615 3.31253536259533 2.83692707346560	-0.91739443333621 -0.52688347941750 -0.04222923432035 0.06204261240843 -0.34548163698093 -0.83797440801789 -1.29311912785919 0.45926228277688 -0.27709710564412 -1.15967261835641 0.36988682621109 2.67181845473137 1.73374731889021 0.60111565919124	-2.06756784799352 -1.69877774448467 -0.37690477065563 0.52242847772495 0.12385132926912 -1.17506365925590 -3.08004371202155 1.52325066618136 0.81932833261125 -1.49775557687486 0.07572575837143 -0.97284687792666 -0.55530422894211 -0.03639329024135

6011156

C H H C O N H	1.46771117722481 3.81122226168725 4.60307959534503 4.26670086232170 3.26486717889083 0.05278342175560 1.16780652283562 -0.23240246972167 0.61994620752379	0.45025182506423 -0.45051566567450 0.01842738106220 -0.99424659290816 -1.16394525870884 -0.65436863426778 -1.04210549141790 -0.35721904545398 -0.48220593604024	-0.07422272394608 0.45831161069870 1.06110843640416 -0.38434283843537 1.09022026830888 -2.67789735774921 -2.19320505865061 -3.92510009260223 -4.48414101963946
TS5 ^c	2		
			$E_{PCM} = -679.1474 E_h$ ZPE = 0.1661 E_h $G_{298} = -679.0205 E_h$
С	-2.47314880978930	-1.07337557599485	-1.78826570260264
С	-1.16546911967100	-0.68905005238465	-1.45535450958342
С	-1.01725472353112	0.12169930512599	-0.30187641597422
С	-2.11504638016710	0.51612179181579	0.48361844703458
С	-3.39949/65563521	0.12090337678367	0.11/6/969/59256
U U	-2 61046038016337	-0.07371220700119	-1.02365416727151
л Ч	-1 93967097591669	1 12963318133331	1 36980566967614
Н	-4.25873516433724	0.42896470517646	0.71802754379994
Н	-4.57878128412020	-0.98860702997094	-1.31968716424408
N	0.24107887393786	0.54940009150180	0.10274661764386
Ν	3.73869736317724	2.57900684554743	-1.42866840894153
Ν	3.26630688646180	1.75651448362778	-0.82741723736910
С	2.77157967549445	0.76097600841948	-0.09041571669199
С	1.39959743250727	0.63850086609549	-0.09759690311939
С	3.72951458642038	-0.18717144274169	0.60617539025351
Н	4.47549472700162	0.37792770933098	1.18464131110138
Н	4.24365282883699	-0.83483964382736	-0.12130944347192
Н	3.15322652513545	-0.81655644967847	1.29778884223571
С	0.01812664820127	-1.10043108103587	-2.32663963662109
O NI	0.923591/990840/	-0.22043821550852	-2.5114//114/4/04
H	0.80876055454924	-2.48061117457299	-3.36628760491618
TS3 ^c	1		
-			E_{PCM} = -679.1471 E_h ZPE = 0.1662 E_h G_{298} = -679.0205 E_h
С	-2.59234657088034	-1.03660389601581	-1.85228016958427
С	-1.25092347180708	-0.70886346377160	-1.60382854557668
С	-0.98704487946625	0.04643224787370	-0.43419889141520
С	-2.01170381417384	0.45142627724083	0.44488213454522
С	-3.32747496093239	0.08764320888675	0.17601634358235

-1.250923471807	708
-0.987044879466	525
-2.011703814173	384
-3.327474960932	239
-3.614064914878	304
-2.829956308847	797
-1.754626243534	164
-4.127787641666	574
-4.645787066502	257
0.302891353640)63
3.838823267787	783

С

Η

Η

Η

Η

Ν

Ν

S48

-0.66119992261880

-1.60271124942896

1.04657269599510

0.39011399966418

-0.94933608302266

0.42968244072777

2.66531983749140

-0.97530462224229

-2.75573627461974

1.32359662047512

0.85535197853983

-1.19395665547701

-0.13012289683973

-1.16823291996233

Ν	3.34544307720905	1.79479794983490	-0.65640937584054
С	2.82957562068178	0.74342265611239	-0.02169272524739
С	1.46149527446107	0.58046478524028	-0.13026851277702
С	3.75675265467621	-0.19691449832682	0.72589487616289
Н	4.38134314327833	0.36274408046737	1.43834534198048
Н	4.40302619697789	-0.75049854392673	0.02711416914968
Η	3.14368136756467	-0.91596165464905	1.28553185116528
С	-0.17748146786949	-1.13437845526058	-2.60185401541949
0	-0.43417909975086	-0.88202694747180	-3.82077772003017
Ν	0.87491786260741	-1.72926918949122	-2.08450343661900
Н	1.50490062142534	-1.98972527555047	-2.85312655394991
TS3 ^c	2		
			$E_{PCM} = -679.1472 E_{h}$
			$ZPE = 0.1661 E_{h}$
			G ₂₉₈ = -679.0208 E _h
0			
0			
С	-2.52764535586911	-1.06142934907479	-1.81308399301220
С	-1.20277777912583	-0.68811213103301	-1.54075477103436
С	-0.99152513373419	0.10141718187427	-0.38219807943360
С	-2.05004432182594	0.49666275452056	0.45897397862850
С	-3.35314051546878	0.12218956042920	0.14476847584132
С	-3.58865448118844	-0.65645996854647	-0.99767527159313
Η	-2.72065413681554	-1.68379074926245	-2.68957361423864
Η	-1.82853816648203	1.09198507734346	1.34721890621322
Η	-4.18084378844729	0.43024749206476	0.78783257891616
Η	-4.60899181347829	-0.95597623458277	-1.25163976316386
Ν	0.28392653502384	0.50026690091610	-0.02818707205312
Ν	3.77006665176102	2.72182169807319	-1.25255577368551
Ν	3.30167767260577	1.85600568638111	-0.71095089563033
С	2.81287218406829	0.80910227928722	-0.04690782491346
С	1.44415676923706	0.64235834088710	-0.11136501834296
С	3.77092588739748	-0.12866266214130	0.66400309385078
Η	4.44595089684635	0.43823877453595	1.32250684107981
Н	4.36557634627941	-0.70852049264264	-0.05914967294797
Н	3.18379828156976	-0.82393992242504	1.27915700055221
С	-0.08610156149322	-1.16975133693394	-2.46483244511136
0	-0.14409352752389	-2.39242330194343	-2.80509971796623
Ν	0.79408423855180	-0.25713495179522	-2.81722719132593
Н	1.47173271311177	-0.69416581393189	-3.45351840062929

I-1N₁

• •••	
ð	
С	-1.37664549394048
С	-0.01914742172963
С	0.83698463556045
С	0.35372753440245
С	-1.01635017030290
С	-1.87431700037487
Н	-2.04398263772278
Н	0.37997558909599
Н	-1.41121737730118
Н	-2.93476764503173
Ν	2.21626328878903

$$\begin{split} E_{PCM} &= -977.5527 \ E_h \\ ZPE &= 0.1826 \ E_h \\ G_{298} &= -977.4122 \ E_h \end{split}$$

0.38116241691485 0.69903491690537 0.45020620623719 -0.10007164607288 -0.39294536683334 -0.16395641879824 0.57039197724862 1.15096968831629 -0.82808950156190 -0.41252421472815 0.82241162971887

1.19873286701053

1.30346858334817

0.22709377796408

-0.97581702557252

-1.06951481739450

0.01131218330360

2.04304036334646

2.21390176736343

-1.99074387566303

-0.07765359240219

Ν	2.70717747048811	-0.39575699396310	1.83332383422924
Ν	3.96977617770450	-0.09913981054358	1.96960166566400
С	4.33451190896322	0.84161891471982	1.05445303453024
С	3.20044566738426	1.13634385359051	0.30594925265588
I	2.98584098735864	2.42821754455753	-1.31435325524095
С	1.28817573080525	-2.11350276426014	-0.44366101857204
0	2.32063453023297	-1.91481360001803	-1.08884095336423
Ν	0.89998028964652	-3.34035788169283	-0.03955764893871
Н	0.08846038802043	-3.48861668220738	0.55065706691158
Н	1.47543535542692	-4.14486273915312	-0.27385120949937
С	5.72182504693169	1.38544577650009	0.95406802335727
Н	5.74220832574908	2.47106214920352	1.14443512307601
Н	6.14751681333402	1.21588862068079	-0.04834669710769
Н	6.36747800651002	0.89163717726229	1.69375809495208

-0.91139703306655 -0.93585671367052 0.08218253464456 1.96394021995191 2.06009699775010 -1.77434297370520 0.03373795719540 0.29683791590986 -0.18835262601387 0.05463146415076 0.70628686303584 0.86984425707536 1.78393738168331 -2.05300075909487 -2.45220725157082 -2.61545652186504 -2.32223902759188 -3.38852630795896 1.11653059614525 2.18645594227731 0.54772756936340 0.93116550677523

 $I-1N_2$

С	-1,49203209554152
C	-0.15074411747170
C	0 72290058837908
C	0 27746621259489
C	-1 07003534328510
C	-1 95025744311860
	2 17459707669090
п	-2.1/458/0/668080
Н	0.23316775558142
Н	-1.42467745001824
Н	-2.99732275371174
N	2.09597452802592
Ν	2.49503961366935
N	3.77101433797960
С	4.23528857498401
С	3.15239909550456
I	3.05482757150085
С	1.15555418554366
0	1.07451690533685
Ν	1.97941052743838
Н	2.01057991162782
Н	2.57339630845495
С	5.66158644361542
Н	5.74458030924309
Н	6.15012826912538
Н	6.21130214122248

	ZPE = $0.1826 E_h$ G ₂₉₈ = -977.4112 E _h
1.16171226127029	0.50956438646389
1.21749441032617	0.89522981534624
0.18744933698300	0.52996378335722

E_{PCM} = -977.5517 E_h

0	•	5	2	9	9	6	3	7	8	3	3	5	7	2	2
-0	•	2	3	0	8	8	0	1	6	1	9	1	0	3	0
-0	•	6	2	7	2	8	7	0	9	5	3	0	7	3	7
-0	•	2	5	3	9	7	1	5	4	6	3	9	6	8	5
0	•	8	0	0	3	2	8	9	3	6	1	3	4	9	3
1	•	4	7	4	1	7	6	9	9	4	6	1	8	6	3
-1	•	2	3	0	1	8	3	2	1	7	5	0	4	3	2
-0	•	5	6	3	1	6	8	0	1	3	5	4	0	3	4
0	•	9	4	0	6	7	5	1	0	4	8	3	4	4	5
2	•	1	3	2	6	3	6	5	1	2	7	9	6	4	4
2	•	2	5	4	4	8	8	3	0	8	3	0	9	5	7
1	•	1	5	2	8	8	6	0	9	5	8	7	8	2	6
0	•	2	9	5	2	1	8	8	9	2	8	4	1	3	6
-1	•	5	7	3	2	4	2	3	1	9	1	4	2	3	8
-0	•	6	9	8	6	2	0	9	8	6	9	9	6	4	5
-1	•	8	6	3	9	5	3	2	3	5	6	8	8	7	7
0	•	2	0	7	2	6	5	1	5	9	2	2	3	2	6
1	•	1	7	8	8	2	3	2	9	1	0	0	0	2	1
-0	•	0	8	0	6	1	9	4	T	3	5	2	9	/	/
0	•	9	8	8	5	T	4	6	0	9	5	/	8	2	9
0	•	/	3	9	3	6	3	8	5	9 1	2	0	8	3	1
1	•	T	7	9	8	9	4	4	с С	1	4	0	4	9	/
T	•	9	2	T	8	/	5	/	8	9	υ	2	υ	5	Τ

 $E_{PCM} = -977.5516 E_h$ ZPE = 0.1825 E_h $G_{298} = -977.4112 E_h$

> 0.60841936374323 1.53143995473385 1.19700092150666 -0.06701075423985 -0.99263268819667 -0.65593951865109

1.22123686829358

0.19365758592523

-0.88749438138619

-0.96897772220779

0.05853183270304

Н	-1.89126426109971	2.06676215940868	0.87323339431879
Н	-1.53374737432187	0.21572137309436	2.50835876369886
Н	0.60611187738042	-0.00083743138464	-1.98199634271722
Н	-0.81861736759876	1.94936383258758	-1.38521168513488
Ν	-0.06891262969379	-1.95324035317913	2.14431770688326
Ν	-0.55975797703318	-3.17749013352404	1.86698829262722
Ν	-0.31200973605889	-3.94776463344637	2.88841590210587
С	0.34109409469974	-3.25021590266424	3.85951098011527
С	0.50134710324572	-1.95301061365909	3.38579066204162
I	1.46612639856459	-0.33493431408419	4.27667782729081
С	1.26898283621496	-2.12231373809407	-0.50367731099751
0	1.00399716198538	-2.75189944355885	-1.53052823114185
Ν	2.34596770321298	-2.38711039482770	0.26237448877150
Н	2.61109981191376	-1.80552028682141	1.04984097722313
Н	2.97125385178787	-3.14304353887297	-0.00457705630198
С	0.76054278051939	-3.85955298008141	5.15674283118811
Н	0.27050503587550	-3.36229778386220	6.00982152945196
Н	1.84959742848025	-3.77737860305031	5.30494967046888
Н	0.48696716943668	-4.92384557803005	5.17158867921203

1.10418503255594 1.18816550630060 0.22118622420291 -0.84278568445496 -0.89876359128095 0.05990389858035 1.85772596645025 2.00547926857290 -1.72060312474172 -0.01438712659127 0.34911403964227 0.06148322651704 0.26954674543481 0.70129332896792 0.75880332785280 1.39466197505090 -1.93960903616273 -2.43293942290703 -2.35973062987027 -1.89753902604840 -3.11564132878298 1.02377863829481 2.03467492985754 0.31229124901908

 $I-1N_4$

H H

С	-1.55618611091073
С	-0.21032286238111
С	0.69602507773017
С	0.28152909867813
С	-1.07165495590455
С	-1.98522188943282
Н	-2.26416145761630
Н	0.14868705261388
Н	-1.42217360975011
Н	-3.03540707089081
Ν	2.06367247119373
Ν	2.41425457826762
Ν	3.69654603226374
С	4.21414878559131
С	3.15891496048244
I	3.14363737871143
С	1.23308984990188
0	2.03501717117955
N	1.12217008072942
Н	0.52493236720078
Н	1.71840322416967
С	5.66030856447314
Н	5.79525856089706
Н	6.14356772054591

6.17962178125656

E _{PCM} = -977.5516 E _h
ZPE = 0.1827 E _h
G ₂₉₈ = -977.4109 E _h

0.60091600238504
0 97043203963243
0 52745163344360
-0.20045275527000
-0.29945575527999
-0.6/2/4466480884
-0.22275433681008
0.95443527436023
1.59920709620052
-1.30127928001199
-0.51558743799632
0.94315539636415
2.20901311844424
2.32572843371433
1.14180980605253
0 23906877245688
-1 74543618982312
-0 72086455228075
0.07621452240215
0.07021452549215
-1.99865610235796
-2.6/54303//24422
-2.32400534184579
0.95482539595731
0.53785070810427
0.26467798841800
1.92205737043338

TS1 ^D 1	
Y	
С	-2.90889646315150
С	-1.63781285474781
С	-0.88490527261400
С	-1.43119999926142
С	-2.70995482549541
C	-3.45183809467672
H	-3.4/536294129/09
H	-1.20566634662393
H	-3.11/11182928819
H N	-4.44821/4898//89
N	1 02546629875612
N	2 08467940106261
С	2.56159798026454
C	1.48190474876922
I	1.83152289153463
С	-0.74108993749310
0	-1.03595696725178
N	0.16114566987097
Н	0.42188660934782
Н	0.62912998472616
С	3.95817010392342
H	3.97379262958558
H	4.52200830444539
Н	4 48776062716876

TS1^D2

Ν

С -3.17612026051979 С -1.90565651910728 С -1.02172146191940 С -1.43545355889001 С -2.71633098200827 С -3.58654535150718 -3.84648806867149 Н -1.57327174825573 Н -3.04564016675200 Н -4.58223312901992 Н 0.22287951291417 Ν 0.84044339400829 Ν 1.95401423045687 Ν С 2.50446049062439 С 1.41237270623033 Ι 1.87883934762410 С -0.56621195709251 0.00309721319726 0 -0.48859909446826

1.71106455277891
1.58332741279313
0.40353483277122
-0.67036794384543
-0.50806046450603
0.65878377806798
2.63396195037612
2.39721328892969
-1.33074855327613
0 74750558598000
0 32504131598598
-0 46075776267440
0 02217186384564
0 77744372228516
0 91756429697865
2 08017388274905
-1 98/45655820205
-2.02/0011020/193
-2.44330673790972
-1.91/40348933483
-3.32492083331155
1.31210300121503
2.41323974530673
0.93003464733838
1.00248556773041

1.62431972608771

1.60873298877426

0.53746657153859

-0.54223864563407

-0.50178185210504

0.56626850592608

2.46643348356160

2.43105079634987

0.56707361605423

0.56574033816457

0.19648683379573

0.39411797066424

0.71111066804219

0.79182019675164

1.32811600579208

-1.75828230851802

-2.31896225905314

-2.21892661812026

-1.33485133747605

E_{PCM} = -977.5099 E_h $ZPE = 0.1794 E_{h}$ G₂₉₈ = -977.3728 E_h

-0.864191696202	80
-0.306312229325	63
-0.479000115999	20
-1.230414702596	32
-1.794092311521	11
-1.612047963222	48
-0.713510362081	57
0.279894317504	87
-2.384664762992	90
-2.051780423983	27
0.136784133216	36
1.992791241477	33
1.826972715349	87
0.827481060371	76
-0.113379019112	84
-1.871502896216	60
-1.521082918863	27
-2.536554804526	93
-0.630007238063	84
0.197795122915	28
-0.818850085053	69
0.789804267002	84
0.744392277812	68
0 077050506707	43
-0.0//058526/9/	ч Ј

E_{PCM} = -977.5081 E_h ZPE = 0.1791 E_h G₂₉₈ = -977.3715 E_h

> -0.74050651002063 -0.16238000089226 -0.39299783000353 -1.21606661335077 -1.79384771882556 -1.55937451053030 -0.54908650127986 0.47486877361810 -2.41993898340883 -2.00948601073909 0.23255276407966 2.24711847035502 1.93225088434140 0.75281006448467 -0.18473828339912 -2.20726989327147 -1.42342889171516 -0.48231000419226 -2.69215553946762

Н Н С Н Н	-0.87761019253567 0.05543780911229 3.97133706007343 4.19074146926402 4.40400587644785 4.48656238079452	-1.71140638533101 -3.05582001351940 0.93125572088900 1.94927778425457 0.21696196521638 0.79645024789423	-3.47913301437457 -2.88274582909487 0.55789477278535 0.19611000216764 -0.16190152920701 1.51930393194108
I-8 ₁			
			$E_{PCM} = -977.5315 E_h$ ZPE = 0.1797 E_h $G_{298} = -977.3350 E_h$
СССССННННИИИССІСОИННСННН	$\begin{array}{c} -2.84711241333727\\ -1.59320093034638\\ -0.88912612516151\\ -1.48244739412674\\ -2.74076120109272\\ -3.42592697682735\\ -3.37337003520578\\ -1.14354812340937\\ -3.17918456132534\\ -4.40771243045081\\ 0.33819552320869\\ 2.11089691870117\\ 2.31099273169841\\ 2.53780582125899\\ 1.40667842028574\\ 1.72767889863137\\ -0.87622994623149\\ -1.35104143467020\\ 0.16706943882589\\ 0.56102604760730\\ 0.57140876755797\\ 3.90677095605321\\ 3.84927916720112\\ 4.38700056883521\\ 4.54688531231989\end{array}$	$\begin{array}{c} 1.73712474438414\\ 1.56048485475856\\ 0.34533672909696\\ -0.72145963921827\\ -0.50648635914140\\ 0.70029275073876\\ 2.68688676490144\\ 2.36098493295157\\ -1.32508944970629\\ 0.82931402860308\\ 0.19876559504510\\ -0.69018292554242\\ -0.02984055676597\\ 0.74100800298525\\ 0.87118917958222\\ 2.36769523627913\\ -2.09092448261297\\ -2.86154935206179\\ -2.45314044302094\\ -1.81556218268647\\ -3.37684219110191\\ 1.37003255877342\\ 2.46808052828204\\ 1.09728003161564\\ 1.01369764386108 \end{array}$	$\begin{array}{c} -0.97067273170601\\ -0.38793965697445\\ -0.52880870113729\\ -1.26077934724712\\ -1.85153603036282\\ -1.71333240039576\\ -0.84148897686464\\ 0.20252508000488\\ -2.42474796468116\\ -2.17545164547722\\ 0.11240867643113\\ 2.86467616247116\\ 1.96548834460174\\ 0.92181974406535\\ 0.02870703400635\\ -1.58721697308712\\ -1.47267791951311\\ -2.31858775964920\\ -0.69763690795527\\ -0.01038543356483\\ -0.81931488945848\\ 0.80471747439415\\ 0.86835473404686\\ -0.14769160015793\\ 1.62388668821082\end{array}$
I-82			$E_{PCM} = -977.5287 E_h$ ZPE = 0.1794 E_h $G_{298} = -977.3322 E_h$
С С С С С Н Н Н Н N N N С	-1.32948322866160 -0.05153097405676 0.68858247849870 0.12174401752205 -1.15876695241156 -1.88925740792758 -1.88894785942850 0.39055602381693 -1.59609023916714 -2.89032906982233 1.94434825830141 4.00974183869784 4.14424919711883 4.28799468458273	1.85391617173024 1.73553883457875 0.54687117608675 -0.53705017707569 -0.39099169224630 0.79006946775314 2.78391455929349 2.56272916000316 -1.22527326170155 0.87606111777818 0.44243069622091 -0.45210118184898 0.12224439389534 0.78570225538207	-0.31304169505561 0.23667232532728 0.08371599522340 -0.63151335412174 -1.19081265185618 -1.02997753300578 -0.18003270065474 0.79636178944187 -1.74560836178601 -1.45950471143100 0.67326657405830 3.20757970336167 2.23826978720713 1.11308842253333

С	3.06235166973771	0.91296184974785	0.34530286581231
I	3.32292315096087	2.04546779758167	-1.56882104656356
С	0.85151118729828	-1.85125085363694	-0.76393027845027
0	1.29242953531335	-2.45376104105607	0.21981093324460
Ν	0.95497036696831	-2.34145953746006	-2.01905772520151
Н	0.65390625397686	-1.81503190013151	-2.83195783277023
Н	1.40055358752638	-3.24287148763875	-2.16754007730501
С	5.66351710175956	1.31265998082945	0.77855226310374
Н	5.65402250755984	2.40848323216814	0.67058217930045
Н	6.04483592066272	0.87170059120879	-0.15598339693983
Н	6.36308395117309	1.05648484853790	1.58663952652737
I-6	•		
	2 2 8		$E_{PCM} = -679.2602 E_{h}$
			$2FL = 0.1708 L_{h}$
			$G_{298} = -6/9.12/3 E_h$
d			
С	-3.41326182127683	1.32256070997539	-0.87922758672705
С	-2.26164672774949	1.31974778101138	-0.10342641711472
С	-1.15193269375239	0.51722543562494	-0.46745697321508
С	-1.25184462955901	-0.28142450264977	-1.64217488646695
С	-2.42846405965111	-0.26695920814969	-2.41797516463729
С	-3.50382513182686	0.52837832095550	-2.04327405028125
Н	-4.26032045363219	1.94833240220488	-0.58447892332461
Н	-2.18743266183459	1.93287452982094	0.79760338290655
Н	-2.47719955912599	-0.88894222630379	-3.31449726113428
Н	-4.41609574140848	0.54059542648905	-2.64459533053550
Ν	-0.02263801885679	0.53746789062705	0.32146136717676
Ν	2.24539125510891	1.20004374324253	2.73478415830962
Ν	2.23239072586211	0.53480014018575	1.81323097382397
С	2.22116102255472	-0.23147084231191	0.75397020091568
С	0.99522860685780	-0.20635045880789	-0.02929637423358
С	-0.10646379831881	-1.11126581791967	-2.02226597160775
0	-0.04374671747631	-1.85127738125219	-3.00495374544697
Ν	0.97319364060023	-1.00672114259372	-1.15354336307281
С	3.44745618168651	-1.05448278867852	0.43446884567100
Н	3.87312337642395	-0.77240563211922	-0.54338744831056
Н	3.20947775380801	-2.13145673541231	0.41548710259152
Н	4.22113102478926	-0.89457293481054	1.19736695322550
Н	1.78741842677734	-1.56949670912822	-1.39361948851220

I-7

		9	$E_{PCM} = -679.2162 E_{h}$ ZPE = 0.1695 E_{h} $G_{298} = -679.0849 E_{h}$
С	-3.51788453022309	1.30378146987168	-0.97516779870367
С	-2.39017458723828	1.33906653891820	-0.15988048366448
С	-1.25772225012425	0.55941098443245	-0.47728386088152
С	-1.28902064631405	-0.25829497576367	-1.63543183236590
С	-2.43521007532718	-0.28461791293444	-2.45018477795749

С	-3.54473737371542	0.49165432520680	-2.12489113996611
Н	-4.38899531057103	1.91316404636878	-0.71936569246732
Н	-2.35912470290369	1.96653886551187	0.73368057540224
Н	-2.44148799910296	-0.91952384063369	-3.33823991315248
Н	-4.43347677555315	0.46957677722064	-2.76020019063970
Ν	-0.14317739818934	0.61227159910185	0.34729574982962
Ν	2.17579277517334	1.27820388519890	2.78715043659782
Ν	2.14243672436652	0.61829222124777	1.86308661558067
С	2.11187345487893	-0.14377257115730	0.79948559338546
С	0.88322381559201	-0.10718614348948	0.03448968432363
С	-0.10307014390673	-1.06157147582883	-1.94860459183491
Ν	0.02364519010033	-1.84326584820370	-2.94465945486599
0	0.95205478114812	-0.92709797455642	-1.05349463479430
С	3.32050915014634	-0.98000927176231	0.45174355792047
Н	3.71840217526954	-0.70099740513835	-0.53673148211486
Н	3.06127184797336	-2.05021355102307	0.42873017754124
Н	4.11171734855421	-0.83094440598947	1.19893566852817
Н	0.94285452996644	-2.29486533659822	-2.95146220570056

TS4^c

С	-3.27463135031555	1.39760511500852
С	-2.08691001232811	1.35836142537192
С	-1.03764348592974	0.51222934095809
С	-1.21346340094535	-0.29225688591871
С	-2.42471658204030	-0.23700062755173
С	-3.45044184610336	0.60133141175143
Н	-4.08227772619161	2.05623108878899
Н	-1.94612462491147	1.97331433969080
Н	-2.53971625241132	-0.86271786176777
Н	-4.38967610977943	0.64368991599483
Ν	0.14628719490916	0.46229821662409
Ν	1.13086444876415	1.23255084240773
Ν	2.08725825146101	0.58094779974016
С	2.32419982566792	-0.28713265587570
С	1.13309157158111	-0.32030477764517
С	-0.11957362439298	-1.17578187367509
0	-0.15331678607942	-1.92054915591837
Ν	1.01725317493025	-1.11947893636053
С	3.59651792967551	-1.05176406065639
Η	4.06716812485601	-0.83743073558112
Н	3.43447246552218	-2.14181913012045
Н	4.31148288311903	-0.77339521507619
Н	1.79339593094233	-1.71862758018931

$$\begin{split} E_{PCM} &= -679.2378 \ E_h \\ ZPE &= 0.1702 \ E_h \\ G_{298} &= -679.1046 \ E_h \end{split}$$

-0.71051426648051
0.01102400602557
-0.40808956912302
-1 56753646777119
-2 28292947882596
-1.00110434440033
-0.3/96990442/641
0.90221414045907
-3.17079193382276
-2.41754300599219
0.29388765109725
1.93828865871676
1.69906970885532
0.71330354097822
-0.09224308578294
-2.00288579286731
-2 98042057683014
-1 20319592838027
0 52020200071470
0.33028280971479
-0.44461898498490
0.59111117669283
1.31663501603981
_1 / 916//229061//
1.40104422090144

-3.29265483131937 С С -2.10780435370336 -1.05428266139485 С С -1.20436630451024 С -2.40801762805866 С -3.44674187999391 -4.10896683367450 Η -1.97756576686822 Η -2.51311252017427 Η -4.37948774930297 Η 0.13532751594161 Ν 1.11862278719495 Ν 2.08610291906164 Ν С 2.30785582825125 С 1.11221993202445 С -0.09414721369761 -0.10230622268336 Ν 1.05039497865330 0 С 3.56670942474588 Η 4.01159833270098 Η 3.39051406256697 Η 4.30203580909326

H 4.30203380909328 H 0.78027237514705

1.39269600642839 1.35463058502483 0.52299551860884 -0.27246472376958 -0.21917743591550 0.60773068888281 2.04041713081724 1.96036266629031 -0.83520472218160 0.64509430247247 0.46791910702427 1.20726597851644 0.56352100685899 -0.29713576355102-0.30510694614559 -1.13978430012038 -1.90328438712696 -1.09749216115315 -1.07315172008899 -0.85854452913083 -2.16020140355243 -0.80565381400428

-2.41343108418434

$$\begin{split} & \textbf{G}_{298} = \textbf{-679.0576} \ \textbf{E}_{h} \\ & -0.70911250528066 \\ & 0.02221069679882 \\ & -0.39920525739767 \\ & -1.56329425618986 \\ & -2.28810261232268 \\ & -1.86653097363061 \\ & -0.37851555199033 \\ & 0.92121657108514 \\ & -3.18322870215165 \\ & -2.43408960330015 \\ & 0.30661777327017 \\ & 1.92173812734163 \\ & 1.69077710891416 \\ & 0.68937424207344 \end{split}$$

-0.09073402126415

-1.98559333042670

-2.99968201116330

-1.18136025593365

-0.51133239343177

0.53167606321452

1.24562059264511

-3.09858237887110

0.47423267801134

 $E_{PCM} = -679.1895 E_{h}$ ZPE = 0.1690 E_h

UV-vis and fluorescence spectra

Figure S1. UV-vis spectra for compounds 2t and 3t in CH_2Cl_2 (C = 10^{-5} M).

Figure S2. Fluorescence spectra for compounds 2t and 3t in CH₂Cl₂ (C = 10^{-5} M, $\lambda_{ex} = 308$ nm).

Copies of IR spectra

3-Butyl-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2a)

IR (KBr)

3-Butyl-4-(4-methylphenyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2q)

3-Butyl-4-(2-furylmethyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2w)

Copies of NMR spectra

2-Azido-N-methylbenzamide (S2a)

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCl₃)

2-Azido-5-bromo-N-methylbenzamide (S2b)

¹H NMR (400 MHz, CDCl₃)

2-Azido-5-bromo-N-methylbenzamide (S2b)

¹³C{¹H} NMR (100 MHz, CDCl₃)

2-Azido-5-iodo-*N*-methylbenzamide (S2c)

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCl₃)

2-Azido-4-methoxy-N-methylbenzamide (S2d)

¹H NMR (400 MHz, CDCl₃)

2-Azido-4-methoxy-N-methylbenzamide (S2d)

¹³C{¹H} NMR (100 MHz, CDCl₃)

2-Azido-*N*,6-dimethylbenzamide (S2e)

¹H NMR (400 MHz, CDCl₃)

2-Azido-*N*,6-dimethylbenzamide (S2e)

¹³C{¹H} NMR (100 MHz, CDCl₃)

2-Azido-N,3-dimethylbenzamide (S2f)

2-Azido-N,3-dimethylbenzamide (S2f)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1a)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1a)

5-Bromo-2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1b)

5-Bromo-2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1b)

(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-5-iodo-*N*-methylbenzamide (1c)

(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-5-iodo-*N*-methylbenzamide (1c)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-4-methoxy-*N*-methylbenzamide (1d)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-4-methoxy-*N*-methylbenzamide (1d)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,6-dimethylbenzamide (1e)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,6-dimethylbenzamide (1e)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,3-dimethylbenzamide (1f)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*,3-dimethylbenzamide (1f)

2-(4-tert-Butyl-5-iodo-1H-1,2,3-triazol-1-yl)-N-methylbenzamide (1g)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

2-(4-tert-Butyl-5-iodo-1H-1,2,3-triazol-1-yl)-N-methylbenzamide (1g)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

2-(5-Iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1h)

2-(5-Iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-methylbenzamide (1h)

2-{5-Iodo-4-[2-(trifluoromethyl)phenyl]-1*H*-1,2,3-triazol-1-yl}-*N*-methylbenzamide (1i)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

2-{5-Iodo-4-[2-(trifluoromethyl)phenyl]-1*H*-1,2,3-triazol-1-yl}-*N*-methylbenzamide (1i)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

2-[4-(1-Hydroxy-1-methylethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1j)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

2-[4-(1-Hydroxy-1-methylethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1j)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

2-[4-(2-Hydroxyethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1k)

¹H NMR (400 MHz, DMSO- d_6)

2-[4-(2-Hydroxyethyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1k)

¹³C{¹H} NMR (100 MHz, DMSO- d_6)

2-[4-(4-*tert*-Butylphenyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (11)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

2-[4-(4-tert-Butylphenyl)-5-iodo-1H-1,2,3-triazol-1-yl]-N-methylbenzamide (11)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

2-[5-Iodo-4-(4-methoxyphenyl)-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1m)

2-[5-Iodo-4-(4-methoxyphenyl)-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (1m)

¹³C{¹H} NMR (100 MHz, CDCl₃–DMSO-*d*₆)

Methyl 3-(5-iodo-1-{2-[(methylamino)carbonyl]phenyl}-1*H*-1,2,3-triazol-4-yl)benzoate (1n)

Methyl 3-(5-iodo-1-{2-[(methylamino)carbonyl]phenyl}-1*H*-1,2,3-triazol-4-yl)benzoate (1n)

2-[4-(4-Acetylphenyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (10)

2-[4-(4-Acetylphenyl)-5-iodo-1*H*-1,2,3-triazol-1-yl]-*N*-methylbenzamide (10)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide (1p)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide (1p)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methylphenyl)benzamide (1q)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methylphenyl)benzamide (1q)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methoxyphenyl)benzamide (1r)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(4-methoxyphenyl)benzamide (1r)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclopropylbenzamide (1s)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclopropylbenzamide (1s)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclohexylbenzamide (1t)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-cyclohexylbenzamide (1t)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[(1*R*)-1-phenylethyl]benzamide (1u)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[(1*R*)-1-phenylethyl]benzamide (1u)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[(1*R*)-1-phenylethyl]benzamide (1u)

APT (151 MHz, CDCl₃)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzohydrazide (1v)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzohydrazide (1v)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(2-furylmethyl)benzamide (1w)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-(2-furylmethyl)benzamide (1w)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]benzamide (1x)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]benzamide (1x)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(3,5-dimethylisoxazol-4-yl)ethyl]benzamide (1y)

2-(4-Butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)-*N*-[2-(3,5-dimethylisoxazol-4-yl)ethyl]benzamide (1y)

N-(tert-Butyl)-2-(4-butyl-5-iodo-1H-1,2,3-triazol-1-yl)benzamide (1z)

N-(*tert*-Butyl)-2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide (1z)

N,*N*'-Butane-1,4-diylbis[2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide] (1aa)

N,*N*'-Butane-1,4-diylbis[2-(4-butyl-5-iodo-1*H*-1,2,3-triazol-1-yl)benzamide] (1aa)

 $2-(4-Butyl-5-iodo-1H-1,2,3-triazol-1-yl)-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]$ benzamide (1ab)

$2-(4-Butyl-5-iodo-1H-1,2,3-triazol-1-yl)-N-[(3\alpha,5\beta,12\alpha)-3,12-dihydroxycholan-24-yl]$ benzamide (1ab)

S134

3-Butyl-4,9-dimethyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2f)

3-tert-Butyl-4-methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2g)

3-tert-Butyl-4-methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2g)

4-Methyl-3-phenyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2h)

4-Methyl-3-phenyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2h)

4-Methyl-3-[2-(trifluoromethyl)phenyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2i)

4-Methyl-3-[2-(trifluoromethyl)phenyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2i)

4-Methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2j)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

4-Methyl[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2j)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

3-(2-Hydroxyethyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2k)

¹H NMR (400 MHz, DMSO- d_6 -CDCl₃ = 3:1 + CD₃OD)

3-(2-Hydroxyethyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2k)

¹³C{¹H} NMR (100 MHz, DMSO- d_6 -CDCl₃ = 3:1 + CD₃OD)

3-(4-*tert*-Butylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2l)

3-(4-*tert*-Butylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2l)

3-(4-Methoxyphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2m)

3-(4-Methoxyphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2m)

Methyl 3-(4-methyl-5-oxo-4,5-dihydro[1,2,3]triazolo[1,5-*a*]quinazolin-3-yl)benzoate (2n)

Methyl 3-(4-methyl-5-oxo-4,5-dihydro[1,2,3]triazolo[1,5-a]quinazolin-3-yl)benzoate (2n)

3-(4-Acetylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (20)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

3-(4-Acetylphenyl)-4-methyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (20)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

3-Butyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2p)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

3-Butyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2p)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

3-Butyl-4-(4-methylphenyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2q)

3-Butyl-4-(4-methylphenyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2q)

3-Butyl-4-(4-methoxyphenyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2r)

3-Butyl-4-(4-methoxyphenyl)[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2r)

3-Butyl-4-cyclopropyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2s)

3-Butyl-4-cyclopropyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2s)

3-Butyl-4-cyclohexyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2t)

3-Butyl-4-cyclohexyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2t)

3-Butyl-4-[(1*R*)-1-phenylethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2u)

3-Butyl-4-[(1R)-1-phenylethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2u)

3-Butyl-4-(2-furylmethyl)[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2w)

3-Butyl-4-[2-(5-methoxy-1*H*-indol-3-yl)ethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2x)

3-Butyl-4-[2-(5-methoxy-1*H*-indol-3-yl)ethyl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4H)-one (2x)

3-Butyl-4-[2-(3,5-dimethylisoxazol-4-yl)ethyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2y)

3-Butyl-4-[2-(3,5-dimethylisoxazol-4-yl)ethyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one (2y)

4,4'-Butane-1,4-diylbis(3-butyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one) (2aa)

¹H NMR (400 MHz, CDCl₃–CD₃OD)

4,4'-Butane-1,4-diylbis(3-butyl[1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one) (2aa)

¹³C{¹H} NMR (100 MHz, CDCl₃–CD₃OD)

3-Butyl-4-[$(3\alpha,5\beta,12\alpha)$ -3,12-dihydroxycholan-24-yl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2ab)

3-Butyl-4-[$(3\alpha,5\beta,12\alpha)$ -3,12-dihydroxycholan-24-yl][1,2,3]triazolo[1,5-*a*]quinazolin-5(4*H*)-one (2ab)

3-Butyl-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3a)

3-Butyl-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3a)

3-Butyl-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3a)

3-Butyl-7-iodo-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3c)

3-Butyl-7-iodo-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3c)

3-Butyl-7-iodo-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3c)

APT (100 MHz, CDCl₃)

3-Butyl-8-methoxy-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3d)

3-Butyl-8-methoxy-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3d)

3-tert-Butyl-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3g)

3-tert-Butyl-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3g)

N-Methyl-3-phenyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3h)

N-Methyl-3-phenyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3h)

3-(4-*tert*-Butylphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3l)

3-(4-tert-Butylphenyl)-N-methyl-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3l)

3-(4-Methoxyphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3m)

3-(4-Methoxyphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3m)

Methyl 3-[5-(methylimino)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-3-yl]benzoate (3n)

Methyl 3-[5-(methylimino)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-3-yl]benzoate (3n)

3-(4-Acetylphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (30)

3-(4-Acetylphenyl)-*N*-methyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (30)

3-Butyl-*N*-(4-methylphenyl)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3q)

3-Butyl-N-(4-methylphenyl)-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3q)

3-Butyl-*N*-(4-methoxyphenyl)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3r)

3-Butyl-*N*-(4-methoxyphenyl)-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3r)

3-Butyl-*N*-cyclopropyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3s)

3-Butyl-*N*-cyclopropyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3s)

3-Butyl-*N*-cyclohexyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3t)

3-Butyl-*N*-cyclohexyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3t)

3-Butyl-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3x)

3-Butyl-*N*-[2-(5-methoxy-1*H*-indol-3-yl)ethyl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3x)

3-Butyl-N-[2-(3,5-dimethylisoxazol-4-yl)ethyl]-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3y)

3-Butyl-*N*-[2-(3,5-dimethylisoxazol-4-yl)ethyl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3y)

¹³C{¹H} NMR (100 MHz, CDCl₃)

3-Butyl-*N-tert*-butyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3z)

¹H NMR (400 MHz, CDCl₃)

3-Butyl-*N-tert*-butyl-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3z)

¹³C{¹H} NMR (100 MHz, CDCl₃)

3-Butyl-N-[(3 α ,5 β ,12 α)-3,12-dihydroxycholan-24-yl]-5H-[1,2,3]triazolo[1,5-a][3,1]benzoxazin-5-imine (3ab)

¹H NMR (400 MHz, CDCl₃)

3-Butyl-N-[(3 α ,5 β ,12 α)-3,12-dihydroxycholan-24-yl]-5*H*-[1,2,3]triazolo[1,5-*a*][3,1]benzoxazin-5-imine (3ab)

¹³C{¹H} NMR (100 MHz, CDCl₃)

References

- ¹ Xu, W.; Chen, Q.-Y. J. Org. Chem. 2002, 67, 9421.
- ² Mader, S.; Molinari, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. *Chem. Eur. J.* **2015**, *21*, 3910.
- ³ Mair, A. C.; Stevens, M. F. G. J. Chem. Soc., C 1971, 2317.
- ⁴ Voloshkin, V. A.; Kotovshchikov, Y. N.; Latyshev, G. V.; Lukashev, N. V.; Beletskaya, I. P. J. Org. Chem. 2022, 87, 7064.
- ⁵ Lukashev, N. V.; Grabovyi, G. A.; Erzunov, D. A.; Kazantsev, A. V.; Latyshev, G. V.; Averin, A. D.; Beletskava, I. P. *Beilstein J. Org. Chem.* **2017**, *13*, 564.
- ⁶ Tennant, G. J. Chem. Soc. C, **1966**, 2290.
- ⁷ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- ⁸ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.
- ⁹ (*a*) Neese, F. WIREs Comput. Mol. Sci. **2012**, 2, 73. (*b*) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys. **2020**, 152, 224108. (*c*) Neese, F. WIREs Comput. Mol. Sci. **2022**, 12, e1606.
- ¹⁰ (*a*) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. **1994**, 98, 11623. (*b*) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648.
- ¹¹ (a) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. **2005**, 7, 3297. (b) Zheng, J.; Xu, X.; Truhlar, D. G. Theor. Chem. Acc. **2011**, 128, 295.
- ¹² (a) Barone, V.; Cossi, M. J. Phys. Chem. A **1998**, 102, 1995. (b) Cossi, M.; Rega, N.;
 Scalmani, G.; Barone, V. J. Comput. Chem. **2003**, 24, 669.
- ¹³ Grimme, S. Chem. Eur. J. **2012**, 18, 9955.
- ¹⁴ CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009, http://www.cylview.org.