Electronic Supplementary Information

Regioselective 2,3-Disubstituted Porphyrins: Synthesis, Spectral, Structural and Electrochemical Properties

Waseem Arif and Ravi Kumar*

Department of Chemistry, National Institute of Technology Srinagar, 190006, Jammu and

Kashmir, India.

Table of Contents (TOC)

Figure S1. B3LYP/6-31G optimized geometries showing top as well as side views of $H_2TPP(PE)_2$ (**1a** and **1b**) and $H_2TPP(Ph)_2$ (**1d** and **1e**), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrincore atoms in Å from the mean plane are shown in figures **1c** and **1f** for $H_2TPP(PE)_2$ and $H_2TPP(Ph)_2$, respectively. Color codes for atoms: C (black), N (blue) and H (white).

Figure S2. B3LYP/6-31G optimized geometries showing top as well as side views of $H_2TPP(CH_3)_2$ (1a and 1b) and $H_2TPP(Br)_2$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrincore atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(CH_3)_2$ and $H_2TPP(Br)_2$, respectively. Color codes for atoms: C (black), N (blue), H (white). and Br (parrotgreen).

Figure S3. B3LYP/6-31G optimized geometries showing Frontier Molecular Orbitals (FMOs) of H_2 TPP(PE)₂ (1a) and H_2 TPP(Ph)₂ (1b), respectively.

Figure S4. B3LYP/6-31G optimized geometries showing Frontier Molecular Orbitals (FMOs) of H_2 TPP(CH₃)₂ (1a) and H_2 TPP(Br)₂ (1b), respectively.

Figure S5. B3LYP/6-31G optimized geometries showing direction of dipole moment of $H_2TPP(PE)_2$ (1a), $H_2TPP(Ph)_2$ (1b), $H_2TPP(CH_3)_2$ (1c) and $H_2TPP(Br)_2$ (1d), respectively.

Figure S6. Molecular orbital energy level diagrams of $H_2TPP(Br)_2$ obtained at the B3LYP/6-31G basis set (Gaussian 16 package).

Figure S7. UV- Visible spectra of $CuTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S8. UV- Visible spectra of NiTPP(X)₂ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S9. UV- Visible spectra of $ZnTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S10. UV- Visible spectra of $CoTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S11. Fluorescence spectra of $ZnTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂ at 298 K.

Figure S12. Cyclic voltammograms of MTPP(PE)₂ [M=Cu(II), Zn(II), Ni(II) and Co(II)] (~1 mM) in CH₂Cl₂ containing 0.1 M TBAPF6 using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K.

Figure S13. Cyclic voltammograms of (a) $CuTPP(X)_2 [X=CH_3, Ph, Br and PE]$ (b) $NiTPP(X)_2 [X=CH_3, Ph, Br and PE]$ (~1 mM) in CH_2Cl_2 containing 0.1 M TBAPF₆ using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K.

Figure S14. Cyclic voltammograms of (a) $CoTPP(X)_2$ [X= CH₃, Ph, Br and PE] (b) ZnTPP(X)₂ [X= CH₃, Ph, Br and PE] (~1 mM) in CH₂Cl₂ containing 0.1 M TBAPF₆ using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K.

Figure S15. ¹H NMR spectrum of H₂TPP(Br)₂ in CDCl₃ at 298 K.

Figure S16. ¹H NMR spectrum of ZnTPP(Br)₂ in CDCl₃ at 298 K.

Figure S17. ¹H NMR spectrum of NiTPP(Br)₂ in CDCl₃ at 298 K.

Figure S18. ¹H NMR spectrum of H₂TPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S19. ¹H NMR spectrum of NiTPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S20.¹H NMR spectrum of ZnTPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S21. ¹H NMR spectrum of H₂TPP(Ph)₂ in CDCl₃ at 298 K.

Figure S22. ¹H NMR spectrum of ZnTPP(Ph)₂ in CDCl₃ at 298 K.

Figure S23. ¹H NMR spectrum of NiTPP(Ph)₂ in CDCl₃ at 298 K.

Figure S24. ¹H NMR spectrum of H₂TPP(PE)₂ in CDCl₃ at 298 K.

Figure S25. ¹H NMR spectrum of ZnTPP(PE)₂ in CDCl₃ at 298 K.

Figure S26. ¹H NMR spectrum of NiTPP(PE)₂ in CDCl₃ at 298 K.

Figure S27. HRMS spectrum of H₂TPP(Br)₂.

Figure S28. HRMS spectrum of ZnTPP(Br)₂.

Figure S29. HRMS spectrum of H_2 TPP(CH₃)₂.

Figure S30. HRMS spectrum of CoTPP(CH₃)₂.

Figure S31. HRMS spectrum of ZnTPP(CH₃)₂.

Figure S32. HRMS spectrum of NiTPP(CH₃)₂.

Figure S33. HRMS spectrum of H₂TPP(PE)₂.

Figure S34. HRMS spectrum of CoTPP(PE)₂.

Figure S35. HRMS spectrum of H₂TPP(Ph)₂.

Figure S36. HRMS spectrum of CuTPP(Ph)₂.

Figure S37. HRMS spectrum of CoTPP(Ph)₂.

Figure S38. HRMS spectrum of ZnTPP(Ph)₂.

Table S1. Crystal structure data of $H_2TPP(CH_3)_2$ and $CuTPP(PE)_2$.

Table S2. Selected bond lengths (Å) and bond angles (°) of $H_2TPP(CH_3)_2$ and $CuTPP(PE)_2$.

Table S3. Selected bond lengths (Å), bond angles (°) and calculated dipole moment for the B3LYP/6-31G optimised geometries of $H_2TPP(X)_2(X = PE, Br, Ph and CH_3)$.

Table S4. Optical absorption spectral data of all the newely synthesized regioselective β -disubstituted free base porphyrins as well as their metal complexes.

Table S5. Fluorescence spectral data and quantum yield of MTPP(X)₂ (M = H₂, Zn, and X = CH₃, Ph, PE) derivatives in CH₂CL₂ at 1298 K.

Table S6. Electrochemical redox data of Regioselective β -disubstituted porphyrins and their metal complexes MTPP(X)₂ [M = H₂, Cu(II), Ni(II) & Zn(II), X = CH₃, Ph, PE & Br]. in CH₂Cl₂ containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

	CuTPP(PE) ₂	H ₂ TPP(CH ₃) ₂ .		
Empirical formula	C ₆₀ H ₃₆ CuN ₄	C ₄₆ H ₃₄ N ₄		
Formula wt.	876.47	642.77		
Crystal system	Triclinic	Monoclinic		
Space group	P-1	P2 ₁ /n		
<i>a</i> (Å)	11.6718(5)	13.9752(18)		
b (Å)	13.6174(7)	18.392(3)		
<i>c</i> (Å)	15.3876(7)	14.596(2)		
α (°)	66.9110(10)	90		
β (°)	82.2880(10)	116.631(4)		
γ (°)	67.6690(10)	90		
Volume (Å ³)	2080.75(17)	3353.5(8)		
Ζ	2	4		
D_{calc} (g/cm ³)	1.399	1.273		
Wavelength (Å)	0.71073	0.71073		
T (°C)	296.15 K	273.15 K		
No. of total reflns.	26360	53314		
No. of indepnt.reflns.	7316	8319		
R ^a	0.0291	0.0563		
R ^b	0.0287	0.0385		
CCDC	2237993	2242270		

Table S1. Crystal structure data of $H_2TPP(CH_3)_2$ and $CuTPP(PE)_2$.

Table S2. Selected bond lengths (Å) and bond angles (°) of CuTPP(PE)₂ and H₂TPP(CH₃)_{2.}

	CuTPP(PE) ₂	H ₂ TPP(CH ₃) ₂
M-N	1.979	-
M-N'	2.017	-
N-C _a	1.381	1.374
N'-C _a	1.386	1.375
C_{α} - C_{β}	1.442	1.454
$C_{\alpha'}-C_{\beta'}$	1.446	1.441
$C_{\beta}-C_{\beta}$	1.344	1.347
$C_{\beta'}-C_{\beta'}$	1.367	1.370
C_{α} - C_m	1.397	1.406
$C_{\alpha'}-C_m$	1.396	1.403
$\Delta C_{\beta}(A)^{a}$	0.287	0.162
Δ24 (Å) ^b	0.173	0.096
ΔMetal (Å)	0.013	-

Bond Length (Å)

Bond Angle (deg)

M-N-C _a	127.23	-
M-N'-C _a	126.77	-
N-M-N	177.04	-
N'-M-N'	177.23	-
N-C _a -C _m	125.94	126.64
$N'-C_{\alpha'}-C_m$	125.48	124.89
$N-C_{\alpha}-C_{\beta}$	109.94	110.27
$N'-C_{\alpha'}-C_{\beta'}$	110.02	107.48
$C_{\beta} - C_{\alpha} - C_{m}$	124.02	122.93
$C_{\beta'}$ - $C_{\alpha'}$ - C_m	124.47	125.85
C_{α} - C_m - $C_{\alpha'}$	123.35	125.69
C_{α} - C_{β} - C_{β}	107.26	106.83
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	106.86	107.72
C _a -N-C _a	105.46	105.75
$C_{\alpha'}$ -N- $C_{\alpha'}$	106.21	109.57

^a ΔC_{β} refers to the mean plane displacement of the β -pyrrole carbons

 $^{b}\Delta 24$ refers to the mean plane deviation of 24-atom core

esd's for all given bond length and bond angles are $\pm\,6\%$

Figure S1. B3LYP/6-31G optimized geometries showing top as well as side views of $H_2TPP(PE)_2$ (**1a** and **1b**) and $H_2TPP(Ph)_2$ (**1d** and **1e**), respectively. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures **1c** and **1f** for $H_2TPP(PE)_2$ and $H_2TPP(Ph)_2$, respectively. Color codes for atoms: C (black), N (blue) and H (white).

Figure S2. B3LYP/6-31G optimized geometries showing top as well as side views of $H_2TPP(CH_3)_2$ (**1a** and **1b**) and $H_2TPP(Br)_2$ (**1d** and **1e**), respectively. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures **1c** and **1f** for $H_2TPP(CH_3)_2$ and $H_2TPP(Br)_2$, respectively. Color codes for atoms: C (black), N (blue), H (white) and Br (parrot-green).

Table S3. Selected bond lengths (Å), bond angles (°) and calculated dipole moment for the B3LYP/6-31G optimised geometries of $H_2TPP(X)_2$ (X = PE, CH₃, Ph and Br).

 $R = CH_3$, PE, Ph & Br

	$H_2TPP(PE)_2$	$H_2TPP(CH_3)_2$	$H_2TPP(Ph)_2$	$H_2TPP(Br)_2$		
Bond Length (Å)						
N-C _a	1.386	1.383	1.382	1.384		
N'-C _a	1.381	1.385	1.386	1.387		
C_{α} - C_{β}	1.439	1.464	1.464	1.465		
$C_{\alpha'}-C_{\beta'}$	1.467	1.446	1.445	1.439		
$C_{\beta}-C_{\beta}$	1.373	1.359	1.357	1.358		
$C_{\beta'}-C_{\beta'}$	1.379	1.382	1.385	1.375		
C_{α} - C_m	1.406	1.413	1.412	1.411		
$C_{\alpha'}-C_m$	1.413	1.407	1.408	1.406		
$\Delta C_{\beta}(A)^{a}$	0.418	0.386	0.485	0.269		
Δ24 (Å) ^b	0.199	0.183	0.236	0.125		
		Bond Angle (deg)				
N-C _a -C _m	127.14	126.65	126.32	126.88		
$N'-C_{\alpha'}-C_m$	125.33	125.39	125.47	125.85		
$N-C_{\alpha}-C_{\beta}$	106.25	110.27	110.25	110.39		
N'- $C_{\alpha'}$ - $C_{\beta'}$	110.15	106.41	106.36	106.03		
C_{β} - C_{α} - C_{m}	126.58	123.06	123.41	123.47		
$C_{\beta'}$ - $C_{\alpha'}$ - C_m	124.76	128.27	128.12	128.36		
C_{α} - C_m - $C_{\alpha'}$	124.92	125.25	124.78	125.22		
$C_{\alpha}-C_{\beta}-C_{\beta}$	108.39	106.82	106.82	106.79		
$C_{\alpha'} - C_{\beta'} - C_{\beta'}$	106.51	108.12	108.09	108.56		
C_{α} -N- C_{α}	110.68	105.76	106.31	106.11		
$C_{\alpha'}$ -N- $C_{\alpha'}$	107.05	110.86	110.96 111.27			
Dipole moment	0.884D		0.467D	2.956D		

^a ΔC_{β} refers to the mean plane displacement of the β -pyrrole carbons

 $^{b}\Delta 24$ refers to the mean plane deviation of 24-atom core

Figure S3. B3LYP/6-31G optimised geometries showing Frontier Molecular Orbitals (FMOs) of H_2 TPP(PE)₂ (1a) and H_2 TPP(Ph)₂ (1b), respectively (having isosurface contour value of 0.03)

Figure S4. B3LYP/6-31G optimized geometries showing Frontier Molecular Orbitals (FMOs) of H_2 TPP(CH₃)₂ (1a) and H_2 TPP(Br)₂ (1b), respectively (having isosurface contour value of 0.03).

Figure S5. B3LYP/6-31G optimized geometries showing direction of dipole moment of H_2 TPP(PE)₂ (1a), H_2 TPP(Ph)₂ (1b), H_2 TPP(CH₃)₂ (1c) and H_2 TPP(Br)₂ (1d), respectively.

Figure S6. Molecular orbital energy level diagrams of $H_2TPP(Br)_2$ obtained at the B3LYP/6-31G basis set (Gaussian 16 package).

Porphyrins	Soret band, (nm)	Q band(s), (nm)
H ₂ TPP(Br) ₂	424 (5.19)	521 (4.22), 560 (sh), 598 (3.71), 656 (3.78)
H ₂ TPP(PE) ₂	438 (5.46)	529 (4.35), 567 (3.96), 610 (3.87), 668 (3.76)
H ₂ TPP(Ph) ₂	424 (5.53)	519 (4.27), 555 (3.84), 595 (3.78), 653 (3.53)
H ₂ TPP(CH ₃) ₂	419 (5.50)	516 (3.65), 588 (3.65), 643 (3.72)
CuTPP(Br) ₂	420 (5.58)	544 (4.33)
CuTPP(PE) ₂	437 (5.50)	557 (3.86), 598 (3.60)
CuTPP(Ph) ₂	420 (5.50)	544 (4.20)
CuTPP(CH ₃) ₂	416 (5.36)	541 (3.25)
CoTPP(Br) ₂	417 (5.58)	538 (4.42)
CoTPP(PE) ₂	433 (5.37)	549 (3.40), 589 (3.44)
CoTPP(Ph) ₂	416 (5.34)	537 (4.19)
CoTPP(CH ₃) ₂	411 (5.37)	533 (4.45)
NiTPP(Br) ₂	422 (5.47)	538 (4.30)
NiTPP(PE) ₂	438 (5.54)	548 (4.41), 593 (4.38)
NiTPP(Ph) ₂	422 (5.36)	538 (4.18)
NiTPP(CH ₃) ₂	417 (5.32)	534 (3.38)
ZnTPP(Br) ₂	424 (5.48)	553 (4.28)
ZnTPP(PE) ₂	442 (5.61)	565 (4.15), 607 (3.91)
ZnTPP(Ph) ₂	423 (5.57)	552 (4.22),
ZnTPP(CH ₃) ₂	418(5.43)	548 (3.88)

Table S4. Optical absorption spectral data of all the newely synthesized regioselective β -disubstituted free base porphyrins as well as their metal complexes. Values in parentheses refer to log ϵ (ϵ in Mol⁻¹ cm⁻¹).

Figure S7. UV- Visible spectra of $CuTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S8. UV- Visible spectra of NiTPP(X)₂ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S9. UV- Visible spectra of $ZnTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S10. UV- Visible spectra of $CoTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂.

Figure S11. Fluorescence spectra of $ZnTPP(X)_2$ (X = CH₃, Ph, PE) derivatives in CH₂Cl₂ at 298 K.

Table S5. Fluorescence spectral data of $ZnTPP(X)_2$ (X = Br, CH₃, Ph, PE) derivatives in CH₂Cl₂ at 298 K, (Φ_f = quantum yield relative to those of ZnTPP in DCM).

Porphyrins	λ excitation, nm	λ emission, nm	$oldsymbol{\Phi}_{\mathrm{f}}$
ZnTPP(Br) ₂	424	652	0.0012
ZnTPP(CH ₃) ₂	418	655	0.0152
ZnTPP(Ph) ₂	423	657	0.0136
ZnTPP(PE) ₂	442	665	0.0281

	Oxidation (V)		Reduction (V)				
Porphyrins	I-Oxd	II-Oxd	III-Oxd	I-Red	II-Red	III-Red	ΔE (V)
H ₂ TPP(PE) ₂	1.05	1.27		-0.99	-1.23		2.04
CuTPP(PE) ₂	1.00	1.39		-1.17	-1.49		2.17
CoTPP(PE) ₂	0.89	1.12	1.31	-0.72	-1.16	-1.49	2.28
NiTPP(PE) ₂	1.08	1.35	1.84	-1.11	-1.39		2.19
ZnTPP(PE) ₂	0.88	1.13		-1.22	-1.50		2.10
H ₂ TPP(Br) ₂	1.07	1.26		-1.01	-1.19		2.08
CuTPP(Br) ₂	1.02	1.42		-1.16	-1.48		2.18
CoTPP(Br) ₂	0.93	1.14	1.33	-0.72	-1.23		2.37
NiTPP(Br) ₂	1.13	1.34		-1.14	-1.39		2.27
ZnTPP(Br) ₂	0.91	1.15		-1.31	-1.50		2.22
H ₂ TPP(Ph) ₂	0.93	1.12		-1.21	-1.36		2.14
CuTPP(Ph) ₂	0.85	1.26		-1.32	-1.60		2.17
CoTPP(Ph) ₂	0.95	1.17	1.56	-0.83	-1.21		2.38
NiTPP(Ph) ₂	0.98	1.31	1.86	-1.24			2.22
ZnTPP(Ph) ₂	0.87	1.07		-1.38	-1.48		2.25
H ₂ TPP(CH ₃) ₂	0.94	1.15		-1.22	-1.55		2.16
CuTPP(CH ₃) ₂	0.87	1.28		-1.31	-1.51		2.18
CoTPP(CH ₃) ₂	0.83	1.04	1.20	-0.81	-1.05		2.09
NiTPP(CH ₃) ₂	0.96	1.30	1.83	-1.20			2.16
ZnTPP(CH ₃) ₂	0.81	1.01		-1.41	-1.60		2.22

Table S6. Electrochemical redox data of regioselective β -disubstituted porphyrins and their metal complexes MTPP(X)₂ [M = H₂, Cu(II), Ni(II) & Zn(II), X = CH₃, Ph, PE & Br] in CH₂Cl₂ containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

Figure S12. Cyclic voltammograms of MTPP(PE)₂ [M=Cu(II), Zn(II), Ni(II) and Co(II)] (~1 mM) in CH_2Cl_2 containing 0.1 M TBAPF₆ using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K

Figure S13. Cyclic voltammograms of (a) $CuTPP(X)_2 [X=CH_3, Ph, Br and PE]$ (b) $NiTPP(X)_2 [X=CH_3, Ph, Br and PE]$ (~1 mM) in CH_2Cl_2 containing 0.1 M TBAPF₆ using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K.

Figure S14. Cyclic voltammograms of (a) $CoTPP(X)_2 [X=CH_3, Ph, Br and PE] (Zn) NiTPP(X)_2 [X=CH_3, Ph, Br and PE] (~1 mM) in CH₂Cl₂ containing 0.1 M TBAPF₆ using Ag/AgCl as reference electrode with a scan rate of 0.10 V/s at 298 K.$

Figure S15. ¹H NMR spectrum of H₂TPP(Br)₂ in CDCl₃ at 298 K.

Figure S16. ¹H NMR spectrum of ZnTPP(Br)₂ in CDCl₃ at 298 K.

Figure S17. ¹H NMR spectrum of NiTPP(Br)₂ in CDCl₃ at 298 K.

Figure S18. ¹H NMR spectrum of H₂TPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S19. ¹H NMR spectrum of NiTPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S20. ¹H NMR spectrum of ZnTPP(CH₃)₂ in CDCl₃ at 298 K.

Figure S21. ¹H NMR spectrum of H₂TPP(Ph)₂ in CDCl₃ at 298 K.

Figure S22. ¹H NMR spectrum of ZnTPP(Ph)₂ in CDCl₃ at 298 K.

Figure S23.¹H NMR spectrum of NiTPP(Ph)₂ in CDCl₃ at 298 K.

Figure S24. ¹H NMR spectrum of H₂TPP(PE)₂ in CDCl₃ at 298 K.

Figure S25. ¹H NMR spectrum of ZnTPP(PE)₂ in CDCl₃ at 298 K.

Figure S26. ¹H NMR spectrum of NiTPP(PE)₂ in CDCl₃ at 298 K.

Figure S27. HRMS spectrum of H₂TPP(Br)₂.

Figure S29. HRMS spectrum of H₂TPP(CH₃)₂.

Figure S30. HRMS spectrum of CoTPP(CH₃)₂.

Figure S31. HRMS spectrum of ZnTPP(CH₃)₂.

Figure S32. HRMS spectrum of NiTPP(CH₃)₂.

Figure S33. HRMS spectrum of H₂TPP(PE)₂.

Figure S35. HRMS spectrum of H₂TPP(Ph)₂.

Figure S36. HRMS spectrum of CuTPP(Ph)₂.

Figure S37. HRMS spectrum of CoTPP(Ph)₂.

Figure S38. HRMS spectrum of ZnTPP(Ph)₂.

