Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Copper-promoted indirect trifluoromethylthiolation of sulfuryl chloride with TMSCF₃: a facile access to trifluoromethyl thioethers

Changge Zheng,*^a Kui Zhao,^a Chao Jiang,^a Ruilong Feng,^a Chunxiang Li,^a Xifei Chen,^a Chongbin Wei,^a Xinxin Gong,^a Jianquan Hong^{*a†}

†Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China

Table of Contents

1. General InformationS-	-1
2. General procedure for synthesis of trifluoromethyl thioethersS-	-1
3. Modification of complex natural product and pharmaceutical moleculesS-	-2
4. Synthesis of aryl trifluoromethyl thioethers in 6 mmol scaleS-	-3
5. Characterization data of the productsS-	-3
5. Mechanism study S-1	.0
7. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	.1
8. HRMS analysis reports for the new compounds	52
9. References	57

1. General Information

Unless otherwise noted, all commercially available materials were purchased from Energy Chemical and used without further purification. Column chromatography was carried out on silica gel 60 (200–300 mesh). Thinlayer chromatography (TLC) was performed using 60 mesh silica gel plates and visualized with shortwavelength UV light (254 nm). ¹H NMR, ¹³C NMR, ¹⁹F NMR were all recorded using CDCl₃ as a solvent on a Bruker 400 MHz spectrometer at 298 K (400 MHz for ¹H, 100 MHz for ¹³C, and 376 MHz for ¹⁹F). Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H or to chloroform $\delta = 77.0$ for ¹³C as an internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dq = doublet of quartets, m = multiplet). Coupling constant *J* was reported in hertz (Hz).

2. General procedure for synthesis of trifluoromethyl thioethers

Ph SO ₂ Cl + TMS	$CF_{3} \frac{[Cu]/Ligand}{PPh_{3}, Base}$	Ph
1g		2g

Table SI. Optimization of the reaction conditions^a

Entry	[Cu]	Ligand	PPh ₃ (eq.)	additive	Solvent	Temp. (°C)	time (h)	Yield $(\%)^b$
1	-	-	2.0	KF	CH ₃ CN	25	14	0
2	CuI	bpy	2.0	KF	CH ₃ CN	25	14	8
3	CuI	bpy	1.0	KF	CH ₃ CN	25	14	6
4	CuI	bpy	1.5	KF	CH ₃ CN	25	14	18
5	CuI	bpy	1.5	KF	DMSO	25	14	5
6	CuI	bpy	1.5	KF	DMF	25	14	71
7	CuI	bpy	1.5	KF	DMAc	25	14	12
8	CuI	bpy	1.5	KF	H_2O	25	14	0
9	CuI	bpy	1.5	K_2CO_3	DMF	25	14	35
10	CuI	bpy	1.5	t-BuOK	DMF	25	14	2
11	CuI	bpy	1.5	Cs_2CO_3	DMF	25	14	37
12	CuI	bpy	1.5	NaOAc	DMF	25	14	29
13	CuI	bpy	1.5	CsF	DMF	25	14	82
14	CuBr	bpy	1.5	CsF	DMF	25	14	61
15	CuBr ₂	bpy	1.5	CsF	DMF	25	14	67
16	CuCl	bpy	1.5	CsF	DMF	25	14	49
17	CuCl ₂	bpy	1.5	CsF	DMF	25	14	48
18	CuI	1,10-Phen	1.5	CsF	DMF	25	14	23
19	CuI	4,4-bpy	1.5	CsF	DMF	25	14	0
20	CuI	bpy	1.5	CsF	DMF	60	14	73
21	CuI	bpy	1.5	CsF	DMF	90	14	80
22	CuI (1.0 eq)	bpy (1.0 eq)	1.5	CsF	DMF	25	14	78
23	CuI (0.1 eq)	bpy (0.1 eq)	1.5	CsF	DMF	25	14	65
24	CuI	bpy	1.5	CsF	DMF	25	6	71
25	CuI	bpy	1.5	CsF	DMF	25	24	82
26°	CuI	bpy	1.5	CsF	DMF	25	14	65

^aReaction conditions: **1a** (0.10 mmol, 1.0 equiv), TMSCF₃ (0.40 mmol, 4.0 equiv), PPh₃ (0.15 mmol, 1.5 equiv), Cu salts (0.02 mmol, 20 mol%), ligand (0.02 mmol, 20 mol%), base (0.40 mmol, 4.0 equiv), 4,4-

Difluorobiphenyl (0.1 mmol, 1.0 equiv, internal standard), solvent (1.5 ml). ^bYields determined by ¹⁹F NMR spectroscopy based on **1a**.^c TMSCF3 2.0 equiv; CsF 2.0 equiv.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar were added sulfonyl chloride **1a** (0.5 mmol), TMSCF₃ (4.0 equiv), CuI (0.2 equiv), bpy (0.2 equiv), PPh₃ (1.5 equiv), CsF (4.0 equiv). The Schlenk tube was evacuated and refilled with dry nitrogen (three times). DMF (5 mL) was then added to the tube by syringe. The reaction mixture was required to stir for 14 hours at room temperature in a nitrogen atmosphere. After the reaction finished, the reaction mixture was diluted with dichloromethane, filtered through a plug of celite and washed with dichloromethane. The filtrate was washed with H₂O (3×10 mL). The organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then concentrated under vacuum. The residue was purified by silica gel flash column chromatography (200-300 mesh) using petroleum ether (60-90 °C) as eluent.

3. Modification of complex natural product and pharmaceutical molecules

The arylsulfonyl chloride 1'i corresponding to product 3i was prepared according to the literature procedures.¹

1) Synthesis of estrone derivative^a

^aReagents and conditions: 1) estrone (4.056 g, 15.0 mmol, 1 equiv.), pyridine (3.640 mL, 3 equiv.), DCM (90 mL), 0 °C, trifluoromethanesulfonic anhydride (3.028 mL, 18 mmol, 1.2 equiv.) was added dropwise. Then the mixture was stirred at room temperature for 14 h. 2) **SI-1** (2.415 g, 6.0 mmol, 1.0 equiv.), Pd(OAc)₂ (0.135 g, 0.6 mmol, 10 mol%), xphos (0.858 g, 1.8 mmol, 30 mol%), Cs₂CO₃ (3.91g, 12.0 mmol, 2.0 equiv.), H₂O (0.216g, 12.0 mmol, 2.0 equiv.), Na₂S₂O₃ (2.367g, 15.0 mmol, 2.5 equiv.), 'BuOH/PhMe (36.0/54.0 mL), N₂, 80 °C, 8 h. 3) **SI-2** (1.095g, 2.0 mmol, 1.0 equiv.), H₂O (0.18 mg, 10.0 mmol, 5.0 equiv.), 'BuOCl (1.086 g, 10.0 mmol, 5.0 equiv.), CH₃CN (30 ml), 0 °C, 30 min.

2) Target product of complex substrates were prepared according to the general procedure.

4. Synthesis of aryl trifluoromethyl thioethers in 6 mmol scale

To an oven-dried 100 mL Schlenk tube equipped with a stir bar were added arylsulfonyl chloride **1a** (6 mmol, 1.516g, 1 equiv), TMSCF₃ (24 mmol, 3.408g, 4.0 equiv), CuI (1.2 mmol, 0.229g, 0.2 equiv), bpy (1.2 mmol, 0.187g, 0.2 equiv), PPh₃ (9 mmol, 2.361g, 1.5 equiv), CsF (24 mmol, 3.648g, 4.0 equiv). The Schlenk tube was evacuated and refilled with dry nitrogen (three times). DMF (60 mL) was then added to the tube by syringe. The reaction mixture was required to stirred for 14 hours at room temperature in a nitrogen atmosphere. After the reaction finished, the reaction mixture was diluted with dichloromethane, filtered through a plug of celite and washed with dichloromethane. The filtrate was washed with H₂O (3×60 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄, then concentrated under vacuum and the residue was purified by silica gel flash column chromatography (200-300 mesh) using petroleum ether (60-90 °C) as eluent to afford pure compound **2a** (1.099 g, 72%).

5. Characterization data of the products

(1,1'-biphenyl)-4-yl(trifluoromethyl)sulfane (2a)² Following the general procedure, compound 2a was synthesized and isolated as white solid (0.095 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 2H), 7.64 – 7.55 (m, 4H), 7.50 – 7.42 (m, 2H), 7.41 – 7.35 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.70 (s). ¹³C NMR (101 MHz, CDCl₃) δ 143.8 (s), 139.7 (s), 136.7 (s), 129.6 (q, J = 308.3 Hz), 129.0 (s), 128.2 (s), 127.2 (s), 123.1 (dd, J = 3.9, 1.9 Hz).

phenyl(trifluoromethyl)sulfane (2b)³ Following the general procedure, compound **2b** was synthesized and isolated as a colorless liquid (0.026 g, 29%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.41 (t, *J* = 7.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.77 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.4 (s), 130.8 (s), 129.7 (q, *J* = 307.9 Hz), 129.5 (s), 124.4 (dd, *J* = 4.1, 2.0 Hz).

(4-(tert-butyl)phenyl)(trifluoromethyl)sulfane (2c)³ Following the general procedure, compound 2c was synthesized and isolated as yellow oil (0.081 g, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.47 – 7.39 (m, 2H), 1.33 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.98 (s). ¹³C NMR (101 MHz, CDCl₃) δ 154.4 (s), 136.2 (s), 129.7 (q, *J* = 307.9 Hz), 126.6 (s), 120.9 (dd, *J* = 4.1, 2.0 Hz).

(4-methoxyphenyl)(trifluoromethyl)sulfane (2d)³ Following the general procedure, compound 2d was synthesized and isolated as colorless oil (0.036g, 35%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 2H), 6.99 – 6.87 (m, 2H), 3.83 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.94 (s). ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (s), 138.3 (s), 129.6 (q, *J* = 308.1 Hz), 115.0 (s), 114.8 (d, *J* = 2.2 Hz), 55.4 (s).

(4-phenoxyphenyl)(trifluoromethyl)sulfane (2e)⁴ Following the general procedure, compound 2e was synthesized and isolated as colorless oil (0.077g, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.7 Hz, 2H), 7.47 – 7.37 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.10 (dd, J = 8.5, 0.9 Hz, 2H), 7.06 – 6.99 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.52 (s). ¹³C NMR (101 MHz, CDCl₃) δ 160.42 (s), 155.6 (s), 138.4 (s), 130.1 (s), 129.6 (q, J = 308.2 Hz), 124.6 (s), 120.1 (s), 118.6 (s), 117.3 (dd, J = 4.1, 2.0 Hz).

(4-(benzyloxy)phenyl)(trifluoromethyl)sulfane (2f)⁴ Following the general procedure, compound 2f was synthesized and isolated as colorless oil (0.078 g, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 2H), 7.42 – 7.34 (m, 5H), 7.02 – 6.97 (m, 2H), 5.08 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.82 (s). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (s), 138.3 (s), 136.2 (s), 129.6 (q, *J* = 308.1 Hz), 128.7 (s), 128.3 (s), 127.5 (s), 115.8 (s), 115.1 (q, *J* = 2.0 Hz), 70.2 (s).

(4-chlorophenyl)(trifluoromethyl)sulfane (2g)³ Following the general procedure, compound 2g was synthesized and isolated as colorless oil (0.021 g, 20%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.38 – 7.33 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.95 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.7 (s), 137.6 (s), 129.77 (s), 129.4 (q, *J* = 308.2 Hz), 122.8 (q, *J* = 2.1 Hz).

(4-bromophenyl)(trifluoromethyl)sulfane (2h)⁴ Following the general procedure, compound 2h was synthesized and isolated as colorless oil (0.039 g, 30%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.52 (d, J = 8.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.52 (s). ¹³C NMR (101 MHz, CDCl₃) δ 140.2 (s), 134.8 (s), 131.3 (s), 129.6 (q, J = 308.6 Hz), 121.8 (d, J = 2.1 Hz).

(**4-iodophenyl**)(**trifluoromethyl**)**sulfane** (**2i**)³ Following the general procedure, compound **2i** was synthesized and isolated as colorless oil (0.058 g, 38%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.40 – 7.34 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.29 (s). ¹³C NMR (101 MHz, CDCl₃) δ 138.8 (s), 137.7 (s), 129.2 (q, *J* = 308.4 Hz), 124.2 (dd, *J* = 4.3, 2.2 Hz), 98.0 (s).

4-((trifluoromethyl)thio)benzonitrile (2j)⁴ Following the general procedure, compound **2j** was synthesized and isolated as colorless oil (0.04 g, 39%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.75 – 7.69 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.53 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.0 (s), 133.0 (s), 130.6 (q, *J* = 2.1 Hz), 129.1 (q, *J* = 308.8 Hz), 117.6 (s), 114.7 (s).

ethyl 4-((trifluoromethyl)thio)benzoate (**2k**)⁴ Following the general procedure, compound **2k** was synthesized and isolated as colorless oil (0.065 g, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.06 (m, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 43.82 (s). ¹³C NMR (101 MHz, CDCl₃) δ 165.6 (s), 135.6 (s), 132.6 (s), 130.4 (s), 129.7 (dd, *J* = 4.1, 2.0 Hz), 129.3 (q, *J* = 308.4 Hz), 61.5 (s), 14.3 (s).

1-(4-((trifluoromethyl)thio)phenyl)ethan-1-one (**2l**)³ Following the general procedure, compound **2l** was synthesized and isolated as colorless oil (0.059 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 7.97 (m, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 3.94 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.83 (s). ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (s), 135.6 (s), 132.2 (s), 130.4 (s), 129.9 (dd, *J* = 4.1, 2.1 Hz), 129.3 (q, *J* = 308.3 Hz), 52.5 (s).

(4-nitrophenyl)(trifluoromethyl)sulfane (2m)⁵ Following the general procedure, compound 2m was synthesized and isolated as yellow oil (0.035 g, 31%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.24 (m, 2H), 7.85 (t, *J* = 7.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.31 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.1 (d, *J* = 0.4 Hz), 129.1 (q, *J* = 310.1 Hz), 126.8 (dd, *J* = 7.1, 3.0 Hz), 124.4 (s), 124.1 (s).

(2-nitrophenyl)(trifluoromethyl)sulfane (2n)⁵ Following the general procedure, compound 2n was synthesized and isolated as yellow oil (0.019 g, 17%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.2, 1.4 Hz,

1H), 7.84 (d, J = 8.1 Hz, 1H), 7.68 (td, J = 7.8, 1.5 Hz, 1H), 7.58 – 7.53 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.14 (s).¹³C NMR (101 MHz, CDCl₃) δ 149.4 (d, J = 1.6 Hz), 133.7 (s), 132.4 (d, J = 2.1 Hz), 129.5 (s), 128.9 (q, J = 310.4 Hz), 125.7 (s), 124.1 (d, J = 2.2 Hz).

(3-nitrophenyl)(trifluoromethyl)sulfane (20)⁶ Following the general procedure, compound 20 was synthesized and isolated as yellow oil (0.030 g, 27%).¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 1.7 Hz, 1H), 8.37 (ddd, *J* = 8.3, 2.1, 0.9 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H).¹⁹F NMR (376 MHz, CDCl₃) δ -42.05 (s).¹³C NMR (101 MHz, CDCl₃) δ 148.6 (s), 141.8 (s), 130.8 (s), 130.5 (s), 129.1 (q, *J* = 308.8 Hz), 126.7 (dd, *J* = 4.0, 2.0 Hz), 125.8 (s).

1-(3-((trifluoromethyl)thio)phenyl)ethan-1-one (**2p**)⁷ Following the general procedure, compound **2p** was synthesized and isolated as colorless oil (0.041 g, 35%). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.22 – 8.12 (m, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 3.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 42.48 (s). ¹³C NMR (101 MHz, CDCl₃) δ 165.80 (s), 140.4 (s), 137.3 (s), 131.9 (s), 131.7 (s), 129.6 (s), 129.4 (q, *J* = 308.3 Hz), 125.1 (dd, *J* = 4.0, 2.0 Hz), 52.5 (s).

(trifluoromethyl)(2,4,6-triisopropylphenyl)sulfane (2q)⁸ Following the general procedure, compound 2q was synthesized and isolated as colorless liquid (0.090 g, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.09 (s, 2H), 3.90 (dt, *J* = 13.7, 6.9 Hz, 2H), 2.90 (dt, *J* = 13.8, 6.9 Hz, 1H), 1.26 (d, *J* = 6.9 Hz, 8H), 1.22 (d, *J* = 8.2 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.70 (s). ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (s), 152.5 (s), 129.6 (q, *J* = 309.2 Hz), 122.6 (s), 121.8 (s), 117.8 (d, *J* = 1.6 Hz), 34.4 (s), 31.6 (s), 23.8 (s).

(5-bromo-2-methoxyphenyl)(trifluoromethyl)sulfane (2r)² Following the general procedure, compound 2r was synthesized and isolated as colorless oil (0.065 g, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.86 (d, *J* = 8.9 Hz, 1H), 3.89 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.04 (s). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (s), 139.2 (s), 134.5 (s), 128.3 (q, *J* = 309.3 Hz), 113.4 (dd, *J* = 3.9, 2.0 Hz), 112.2 (s), 111.6 (s), 55.3 (s).

(4-chloro-2,5-dimethylphenyl)(trifluoromethyl)sulfane (2s) Following the general procedure, compound 2s was synthesized and isolated as colorless oil (0.058 g, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.32 (s, 1H), 2.47 (s, 3H), 2.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.52 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.9 (s), 140.2 (s), 137.8 (s), 134.8 (s), 131.3 (s), 129.6 (q, *J* = 308.6 Hz), 121.8 (d, *J* = 2.1 Hz), 20.6 (s), 19.4 (s). HRMS m/z (EI): calcd. for C₉H₈ClF₃S, [M]⁺: 239.9987; found: 239.9988.

(2,4-Dichlorophenyl)(trifluoromethyl)sulfane (2t) Following the general procedure, compound 2t was synthesized and isolated as colorless oil (0.025 g, 20%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 2.2 Hz, 1H), 7.32 (dd, *J* = 8.4, 2.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.05 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.1 (s), 139.2 (s), 138.3 (s), 130.6 (s), 129.0 (q, *J* = 309.7 Hz), 128.1 (s), 122.5 (dd, *J* = 4.3, 2.2 Hz). HRMS m/z (EI): calcd. for C₇H₃Cl₂F₃S, [M]⁺: 245.9285; found: 245.9283.

(2-methoxy-4-nitrophenyl)(trifluoromethyl)sulfane (2u) Following the general procedure, compound 2u was synthesized and isolated as a yellow oil (0.049 g, 39%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 8.5, 2.3 Hz, 1H), 7.80 (d, J = 2.2 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 4.02 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.32 (s). ¹³C NMR (101 MHz, CDCl₃) δ 159.7 (s), 150.2 (s), 136.0 (d, J = 1.1 Hz), 129.0 (q, J = 309.4 Hz), 121.8 (dd, J = 4.0, 2.0 Hz), 116.0 (s), 106.3 (s), 56.8 (s). HRMS m/z (EI): calcd. for C₈H₆O₃NF₃S, [M]⁺: 253.0020; found: 253.0012.

(4-methoxy-2-nitrophenyl)(trifluoromethyl)sulfane (2v)⁹ Following the general procedure, compound 2v was synthesized and isolated as yellow oil (0.038 g, 30%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.8 Hz, 1H), 7.47 (d, *J* = 2.8 Hz, 1H), 7.17 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.92 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 42.05 (s). ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (s), 153.1 (dd, *J* = 2.8, 1.3 Hz), 137.1 (d, *J* = 1.1 Hz), 128.9 (q, *J* = 310.1 Hz), 119.4 (s), 111.0 (dd, *J* = 4.8, 2.5 Hz), 110.5 (s), 56.2 (s).

5-((trifluoromethyl)thio)-2,3-dihydrobenzofuran (**2w**)¹⁰ Following the general procedure, compound **2w** was synthesized and isolated as colorless oil (0.087 g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.41 (d, *J* = 8.3 Hz, 1H), 6.80 (d, *J* = 8.3 Hz, 1H), 4.64 (t, *J* = 8.8 Hz, 2H), 3.24 (t, *J* = 8.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -44.18 (s). ¹³C NMR (101 MHz, CDCl₃) δ 156.0 (s), 137.3 (s), 135.1 (s), 128.6 (q, *J* = 308.1 Hz), 127.7 (s), 127.2 (s), 126.5 (s), 114.1 (dd, *J* = 4.0, 2.0 Hz), 69.1 (s).

naphthalen-1-yl(trifluoromethyl)sulfane $(3a)^2$ Following the general procedure, compound **3a** was synthesized and isolated as colorless oil (0.067 g, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.5 Hz, 1H), 7.95 (t, J = 7.5 Hz, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.62 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.46 (dd, J = 8.1, 7.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.14 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.7 (s), 136.7 (s), 134.34 (s), 133.2 (s), 131.3 (s), 128.7 (q, J = 309.2 Hz), 127.5 (s), 126.6 (s), 125.7 (s), 124.8 (s), 124.5 (s), 120.6 (dd, J = 3.6, 1.8 Hz).

naphthalen-2-yl(trifluoromethyl)sulfane (**3b**)⁴ Following the general procedure, compound **3b** was synthesized and isolated as colorless oil (0.071 g, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.86 (d, J = 8.3 Hz, 3H), 7.66 (dd, J = 8.5, 1.2 Hz, 1H), 7.60 – 7.51 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.47 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.0 (s), 133.9 (s), 133.4 (s), 131.8 (s), 129.8 (q, J = 309.1 Hz), 129.2 (s), 128.2 (s), 128.0 (s), 127.8 (s), 127.0 (s), 121.5 (dd, J = 3.9, 1.9 Hz).

8-((trifluoromethyl)thio)quinolone (3c)¹¹ Following the general procedure, compound 3c was synthesized and isolated as colorless liquid (0.069 g, 60%). ¹H NMR (400 MHz, CDCl₃) δ 9.04 (dd, J = 4.2, 1.6 Hz, 1H), 8.22 (dd, J = 8.3, 1.6 Hz, 1H), 8.09 (d, J = 7.4 Hz, 1H), 7.90 (d, J = 9.1 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.52 (dd, J = 8.3, 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.10 (s). ¹³C NMR (101 MHz, CDCl₃) δ 150.7 (s), 146.6 (s), 136.8 (s), 134.3 (d, J = 1.1 Hz), 129.9 (q, J = 308.5 Hz), 129.7 (s), 128.8 (s), 126.7 (s), 122.1 (s).

N,N-dimethyl-5-((**trifluoromethyl)thio**)**naphthalen-1-amine** (**3d**)¹² Following the general procedure, compound **3d** was synthesized and isolated as yellow oil (0.079 g, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.6 Hz, 1H), 8.24 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 7.1 Hz, 1H), 7.60 – 7.43 (m, 2H), 7.15 (d, *J* = 7.4 Hz, 1H), 2.88 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.24 (s). ¹³C NMR (101 MHz, CDCl₃) δ 151.4 (s), 137.8 (s), 136.8 (s), 129.8 (s), 129.7 (q, *J* = 309.2 Hz), 128.6 (s), 127.5 (s), 124.6 (s), 121.8 (d, *J* = 1.8 Hz), 120.6 (s), 115.0 (s), 45.4 (s).

Bis[4-[(trifluoromethyl)sulfonyl]phenyl] ether (3e) Following the general procedure, compound **3e** was synthesized and isolated as colorless oil (0.137 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.63 (m, 4H), 7.09 – 7.04 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.29 (s). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (s), 137.5 (s), 128.4 (q, *J* = 308.2 Hz), 118.9 (s), 118.0 (q, *J* = 2.1 Hz). HRMS m/z (EI): calcd. for C₁₄H₈OF₆S₂, [M]⁺: 369.9921; found: 369.9912.

 $()_{14}$ SCF₃

1-[(trifluoromethyl)thio]hexadecane (**3f**)¹³ Following the general procedure, compound **3f** was synthesized and isolated as colorless oil (0.052 g, 32%). ¹H NMR (400 MHz, CDCl₃) δ 2.92 – 2.81 (m, 2H), 1.74 – 1.63 (m, 2H), 1.44 – 1.35 (m, 2H), 1.26 (s, 24H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.29 (s).¹³C NMR (101 MHz, CDCl₃) δ 131.2 (q, *J* = 305.6 Hz), 32.0 (s), 29.9 (d, *J* = 1.9 Hz), 29.7 (br s), 29.7 (s), 29.7 (s), 29.6 (s), 29.6 (s), 29.4 (br s), 29.4 (s), 29.0 (s), 28.5 (s), 22.7 (s), 14.1 (s).

$$()_{10}$$
 SCF₃

1-[(Trifluoromethyl)thio]dodecane (3g)¹⁴ Following the general procedure, compound **3g** was synthesized and isolated as colorless oi (0.047g 35%). ¹H NMR (400 MHz, CDCl₃) δ 2.87 (t, *J* = 7.5 Hz, 2H), 1.76 – 1.62 (m, 2H), 1.46 – 1.35 (m, 2H), 1.27 (s, 16H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.38 (s). ¹³C NMR (101 MHz, CDCl₃) δ 130.3 (q, *J* = 305.6 Hz), 31.0 (s), 28.9 (d, *J* = 1.7 Hz), 28.7 (br s), 28.6 (s), 28.4 (br s), 28.0 (s), 27.6 (s), 21.7 (s), 13.1 (s).

$$()_{6} SCF_{3}$$

1-[(trifluoromethyl)thio]octane (3h)¹⁵ Following the general procedure, compound **3h** was synthesized and isolated as colorless oil (0.029 g, 27%). ¹H NMR (400 MHz, CDCl₃) δ 2.92 – 2.82 (m, 2H), 1.73 – 1.64 (m, 2H), 1.39 (dd, J = 14.2, 7.1 Hz, 2H), 1.28 (s, 8H), 0.89 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 41.31 (s). ¹³C NMR (101 MHz, CDCl₃) δ 131.2 (q, J = 305.6 Hz), 31.7 (s), 29.9 (dd, J = 3.8, 1.8 Hz), 29.4 (s), 29.1 (s), 28.9 (s), 28.5 (s), 22.6 (s), 14.1 (s).

13-methyl-3-(trifluoro(thioxo)-l6-methyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]-phenanthren-17-one (3i)¹² Following the general procedure, compound **3i** was synthesized and isolated as colorless oil (0.089 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 3H), 2.94 (dd, *J* = 9.5, 4.8 Hz, 2H), 2.61 – 2.26 (m, 3H), 2.24 – 1.93 (m, 4H), 1.74 – 1.41 (m, 6H), 0.92 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 42.86 (s). ¹³C NMR (101 MHz, CDCl₃) δ 220.6 (s), 143.0 (s), 138.2 (s), 136.8 (s), 133.5 (s), 129.7 (q, *J* = 308.0 Hz), 126.6 (s), 121.2 (d, *J* = 1.9 Hz), 50.5 (s), 47.9 (s), 44.4 (s), 37.8 (s), 35.8 (s), 31.5 (s), 29.1 (s), 26.2 (s), 25.5 (s), 21.6 (s), 13.8 (s).

5-(2-ethoxy-5-((trifluoromethyl)thio)phenyl)-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]-1-methyl-3-propyl-3-pr

pyrimidin-7-one (**3j**)¹² Following the general procedure, compound **3j** was synthesized and isolated as white solid (0.167 g, 81%). ¹H NMR (400 MHz, CDCl₃) δ 10.95 (s, 1H), 8.70 (d, *J* = 2.4 Hz, 1H), 7.72 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.08 (d, *J* = 8.7 Hz, 1H), 4.33 (q, *J* = 7.0 Hz, 2H), 4.26 (s, 3H), 2.99 – 2.90 (m, 2H), 1.93 – 1.81

(m, 2H), 1.62 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.68 (s). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (s), 153.7 (d, J = 9.4 Hz), 146.9 (d, J = 5.8 Hz), 140.2 (s), 139.4 (s), 138.4 (s), 129.5 (q, J = 308.4 Hz), 124.5 (s), 121.6 (s), 116.9 (dd, J = 4.3, 2.1 Hz), 113.8 (s), 65.8 (s), 38.2 (s), 27.7 (s), 22.4 (s), 14.6 (s), 14.0 (s).

(1S,4R)-7,7-dimethyl-1-(((trifluoromethyl)thio)methyl)bicyclo[2.2.1]heptan-2-one (3k) Following the general procedure, compound 3k was synthesized and isolated as white solid (0.025 g, 20%). ¹H NMR (400 MHz, CDCl₃) δ 2.96 (dd, J = 144.8, 13.0 Hz, 2H), 2.40 (ddd, J = 18.5, 4.7, 2.8 Hz, 1H), 2.14 (t, J = 4.5 Hz, 1H), 2.10 – 1.86 (m, 3H), 1.66 (ddd, J = 13.6, 9.3, 4.0 Hz, 1H), 1.48 – 1.38 (m, 1H), 1.06 (s, 3H), 0.93 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -42.99 (s). ¹³C NMR (101 MHz, CDCl₃) δ 216.6 (s), 131.3 (q, J = 305.5 Hz), 60.2 (s), 47.9 (s), 43.7 (s), 42.9 (s), 26.8 (s), 26.6 (s), 26.4 (q, J = 2.5 Hz), 20.0 (s), 19.7 (s). HRMS m/z (EI): calcd. for C₁₁H₁₅OF₃S, [M]⁺: 252.0796; found: 252.0794.

6. Mechanism study

(a) To an oven-dried 25 mL Schlenk tube equipped with a stir bar was added arylsulfonyl chloride **1a** (0.5 mmol), TMSCF₃ (4.0 equiv), PPh₃ (1.5 equiv), CsF (4.0 equiv). The Schlenk tube was evacuated and refilled with dry nitrogen (three times). DMF (5 mL) was then added to the tube by syringe. The reaction mixture was required to stirred for 14 hours at room temperature in a nitrogen atmosphere. After the reaction finished, the reaction mixture was diluted with dichloromethane, filtered through a plug of celite and washed with dichloromethane. The filtrate was washed with H₂O (3×10 mL). The organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then filtered and concentrated under vacuum. The raw product was analyzed by ¹⁹F NMR using 4,4'-difluorobiphenyl (-115.0 ppm) as internal standard.

(b) To an oven-dried 25 mL Schlenk tube equipped with a stir bar were added arylsulfonyl chloride **1a** (0.5 mmol), TMSCF₃ (4.0 equiv), CuI (0.2 equiv), bpy (0.2 equiv), CsF (4.0 equiv). The Schlenk tube was evacuated and refilled with dry nitrogen (three times). DMF (5 mL) was then added to the tube by syringe. The reaction mixture was required to stirred for 14 hours at room temperature in a nitrogen atmosphere. After the reaction finished, the reaction mixture was diluted with dichloromethane, filtered through a plug of celite and washed with dichloromethane. The filtrate was washed with H₂O (3×10 mL). The organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then filtered and concentrated under vacuum. The raw product was analyzed by ¹⁹F NMR using 4,4'-difluorobiphenyl (-115.0 ppm) as internal standard.

7. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of the products

¹H NMR spectrum of **2a** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2a** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2a** (101 MHz, CDCl₃)

¹H NMR spectrum of **2b** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2b** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2b** (101 MHz, CDCl₃)

¹H NMR spectrum of **2c** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2c** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2c** (101 MHz, CDCl₃)

¹H NMR spectrum of **2d** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of 2d (376 MHz, CDCl₃)

¹³C NMR spectrum of **2d** (101 MHz, CDCl₃)

¹H NMR spectrum of **2e** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2e** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2e** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2f** (376 MHz, CDCl₃)

¹⁹F NMR spectrum of **2g** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2g** (101 MHz, CDCl₃)

¹H NMR spectrum of **2h** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2h** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2h** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2i** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2i** (101 MHz, CDCl₃)

¹H NMR spectrum of **2j** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2j** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2j** (101 MHz, CDCl₃)

¹H NMR spectrum of **2k** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2k** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2k** (101 MHz, CDCl₃)

¹³C NMR spectrum of **2l** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2m** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2m** (101 MHz, CDCl₃)

¹H NMR spectrum of **2n** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2n** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2n** (101 MHz, CDCl₃)

¹H NMR spectrum of **20** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **20** (376 MHz, CDCl₃)

¹³C NMR spectrum of **20** (101 MHz, CDCl₃)

¹H NMR spectrum of **2p** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2p** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2p** (101 MHz, CDCl₃)

¹H NMR spectrum of **2q** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2q** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2q** (101 MHz, CDCl₃)

¹H NMR spectrum of **2r** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2r** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2r** (101 MHz, CDCl₃)

¹H NMR spectrum of **2s** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2s** (376 MHz, CDCl₃)

--42.52

¹³C NMR spectrum of **2s** (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectrum of **2t** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2t** (376 MHz, CDCl₃)

¹H NMR spectrum of **2u** (400 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

16

¹⁹F NMR spectrum of **2v** (376 MHz, CDCl₃)

¹H NMR spectrum of **2w** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2w** (376 MHz, CDCl₃)

---44.18

¹³C NMR spectrum of **2w** (101 MHz, CDCl₃)

¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3a** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3a** (101 MHz, CDCl₃)

¹H NMR spectrum of **3b** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3b** (376 MHz, CDCl₃)

---42.47

¹³C NMR spectrum of **3b** (101 MHz, CDCl₃)

110 100 f1 (ppm) ò -10

¹H NMR spectrum of **3c** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3c** (376 MHz, CDCl₃)

¹H NMR spectrum of **3d** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3d** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3d** (101 MHz, CDCl₃)

¹H NMR spectrum of **3e** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3e** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (101 MHz, CDCl₃)

¹H NMR spectrum of **3f** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3f** (376 MHz, CDCl₃)

S-54

¹⁹F NMR spectrum of **3g** (376 MHz, CDCl₃)

¹H NMR spectrum of **3h** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3h** (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR spectrum of **3h** (101 MHz, CDCl₃)

¹H NMR spectrum of **3i** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3i** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (101 MHz, CDCl₃)

¹H NMR spectrum of **3j** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3j** (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) ¹³C NMR spectrum of **3j** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3k** (376 MHz, CDCl₃)

8. HRMS analysis reports for the new compounds

HRMS (EI) spectra of 2s

		Shanghai Ins	stitute of Org	anic Unemis	SUY		
		Chinese	e Academic C	MS Deport			
		High R	esolution El-	MS Report			
		Low R	esolution El-	-MS Report			
instrument:	Water	s Premier GC-TO	OF MS				
Operation Mode	e: EI F	Positive Ion Mo	de	(Electror	n Energy: 7	0eV)	
Card Serial Nu	mber: GCT	-P-EI-T21-2738					
Sample Serial N	Number: 201	9551-ZK-1					
Operator:	Li		Date:		2021/1	1/01	
m/z	Theo.	Delta	RDB	Composit	ion		
	Mass	(ppm) 0.00	12.0 C:	12 H 4 O 2 N 2	S		
239.9988	239.9900	1.66	8.0 C:	11 H 6 O 3 Cl	F		
	239.9982	2.56	4.0 C	9 H8 Cl F 3 S	5		
	239.9995	-2.72	21.0 C	20	_		
	239.9995	-3.10	4.0 C	8 H7 O4 CL H	:'2		
T G	- 466 GCT-P-EI-T21-466 369 (100-	(8.697) Cm (389:390-	(380:382+405:407))		24	0	TOF MS EI+ 5.17e3
T G	-466 3CT-P-EL-T21-466 369 (100-	(8,697) Cm (389:390-	(380:382+405:407))		24	0	TOF MS EI+ 5.17e3
T G	-466 3CT-P-EI-T21-466 389 (100	(8.697) Cm (389:390-	(380:382+405:407))	171	24	0	TOF MS EI+ 5.17e3
T G	-466 3CT-P-EI-T21-466 359 (100-	(8,697) Cm (399:380-	(380;382+405:407))	171	24	0	TOF MS EI+ 5.17e3
T G	-466 3CT-P-EI-T21-466 389 (100-	(8,697) Cm (399:360-	(380:382+405:407))	171	24	0	TOF MS EI+ 5.17e3
T G	-466 3CT-P-ELT21-466 389 (100-	(8,697) Cm (389:380-	(380;582+405;407))	171	24	0	TOF MS EI+ 5.17e3
T G T	- 466 SCT-P-EI-T21-466-3694 100 - -	(8,697) Cm (389:380-	(380;382+405;407))	171	24	0	TOF MS EI+ 5.17e3
Ţ	-466 2CT-P-EL-T21-466 389 (100 	(8,697) Cm (389:380-	(380:382+405:407))	171	24	9 242	TOF MS EI+ 5.17e3
T	-466 3CT-P-EI-T21-466 389 π 100- 3 ²	(8,697) Cm (399:360-	(380;582+405;407))	171	24	9 242	TOF MS EI* 5.17e3
T G	-466 SCT-P-EI-T21-466-369 (100-	(8,697) Cm (399:360-	(380;382+405;407))	171	24	9 9 242	TOF MS EI+ 5.17e3
T G	-466 3CT-P-ELT21-466 359 (100-	(8,697) Cm (389:380-	(380;382+405;407))	171	24	0 9 242	TOF MS EI+ 5.17e3
T G	-466 3GT-P-EI-T21-466 389 (100- 3	(8,697) Cm (399:360-	(380;382+405;407)) (380;382+405;407)) (380;382+405;407))	171 173 60	24	9 242	TOF MS EI+ 5.17e3
Ţ	-466 3CT-P-EL-T21-466 369 (100 	(8,697) Cm (389:380-	(380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407)) (380:382+405:407) (380:382+405:407) (380:382+405:407) (380:382+405:407) (380:382+405:407) (380:382+405) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:380) (380:382+40) (380:382+40) (380:382+40) (380:382+40) (380:382+40)	171 173 60	24	9 9 242	TOF MS EI+ 5.17e3
Ţ	-466 3CT-P-ELT21-466 359 (100- 	86,697) Cm (389:380- 1997) Cm (389:380- 1997) Cm (389:380- 1997) Cm (389:380- 1997) Cm (389:380- 1997) Cm (389:380- 1997) Cm (389:380-	(380:382+405:407)) 145 145 125 125 127 147	171 173 60 170 174 191	24 23 23 21 219 223	9 242 243	TOF MS EI+ 5.17e3

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution EI-MS Report

Low Resolution EI-MS Report

Instrument:	Wat	ers Premier GC-'	fof MS							
Operation Mod	le: EI	EI Positive Ion Mode (Electron Energy: 70eV)								
Card Serial Nu	mber: GC	T-P-EI-T21-274	3							
Sample Serial 1	Number: 20	19551-ZK-6								
Operator:	Li		Date		2021/11/01					
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Compositi	.on					
252.0794	252.0795	-0.45	-10.0 H	120 O 4 N 2 F 4 S	52					
	252.0792	0.64	7.0 0	13 H13 O4 F						
	252.0791	1.27	-4.0 0	C5 H14 O4 F6						
	252.0790	1.50	3.0 0	C11 H15 O F3 S						
	252.0802	-3.03	-1.0 0	C8 H16 O2 F4 S						
T-4 GC 10	166 T-P-EI-T21-466 476 (\$ 0	9.713) Cm (476-(480:4	194+470:472))	216		TOF MS EI+ 2.12e3				
				Ý	X					
			157							
				()						
				185						
	<u></u>	100		A	252					
		109								
	-	12	3							
		01								
	-	407								
		107								
	4									
		95 93		185						
				183	253					
	67	110	133 150 157	181 187 209 21	18 254					
	0 40 60	89 80 100 120	140 160	164 189 180 200 22	0 240 260	280 m/z				
	40 00	00 100 120	140 100	150 200 221	5 240 200	200				

9. References

1. (a) Lee, Y. H.; Morandi, B., Palladium-catalyzed intermolecular aryliodination of internal alkynes. *Angew. Chem., Int. Ed.* **2019**, *58*(19), 6444–6448. (b) Xiao, X.; Feng, M.; Jiang, X., Transition-metal-free persulfuration to construct unsymmetrical disulfides and mechanistic study of the sulfur redox process. *Chem. Commun.* **2015**, *51*, 4208–4211.

2. Kurose, R.; Nishii, Y.; Miura, M., Metal-free direct trifluoromethylthiolation of aromatic compounds using triptycenyl sulfide catalyst. *Org. Lett.* **2021**, *23*, 2380–2385.

3. Shao, X.; Xu, C.; Lu, L.; Shen, Q., Structure-reactivity relationship of trifluoromethanesulfenates: discovery of an electrophilic trifluoromethylthiolating reagent. *J. Org. Chem.* **2015**, *80*, 3012–3021.

4. Li, A.; Li, Y.; Liu, J.; Chen, J.; Lu, K.; Qiu, D.; Fagnoni, M.; Protti, S.; Zhao, X., Metal-free trifluoromethylthiolation of arylazo sulfones. *J. Org. Chem.* **2021**, *86*, 1292–1299.

5. Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K. W., An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides. *Angew. Chem., Int. Ed.* **2013**, *52*, 1548–1552.

6. Zheng, C.; Liu, Y.; Hong, J.; Huang, S.; Zhang, W.; Yang, Y.; Fang, G., Copper(I)-promoted trifluoromethylthiolation of arenediazonium salts with AgSCF₃. *Tetrahedron Lett.* **2019**, *60*, 1404–1407.

7. Zhu, X. X.; Wang, H. Q.; Li, C. G.; Xu, X. L.; Xu, J.; Dai, J. J.; Xu, H. J., Electrochemical trifluoromethylation of thiophenols with sodium trifluoromethanesulfinate. *J. Org. Chem.* **2021**. (DOI: 10.1021/acs.joc.0c02659)

8. Zhang, P.; Li, M.; Xue, X. S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q., N-trifluoromethylthio-dibenzenesulfonimide: a shelf-stable, broadly applicable electrophilic trifluoromethylthiolating reagent. *J. Org. Chem.* **2016**, *81*, 7486–7509.

9. Exner, B.; Bayarmagnai, B.; Jia, F.; Goossen, L. J., Iron-catalyzed decarboxylation of trifluoroacetate and its application to the synthesis of trifluoromethyl thioethers. *Eur. J. Org. Chem.* **2015**, *21*, 17220–17223.

10. Luo, Z.; Yang, X.; Tsui, G. C., Perfluoroalkylation of thiosulfonates: synthesis of perfluoroalkyl sulfides. *Org. Lett.* **2020**, *22*, 6155–6159.

11. Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T., Trifluoromethyl thianthrenium triflate: A readily available trifluoromethylating reagent with formal CF_{3^+} , $CF_{3^{\bullet}}$, and CF_{3^-} reactivity. *J. Am. Chem. Soc.* **2021**, *143*, 7623–7628.

12. Zheng, C.; Jiang, C.; Huang, S.; Zhao, K.; Fu, Y.; Ma, M.; Hong, J., Transition-metal-free synthesis of aryl trifluoromethyl thioethers through indirect trifluoromethylthiolation of sodium arylsulfinate with TMSCF₃. *Org. Lett.* **2021**, *23*, 6982–6986.

13. Kieltsch, I.; Eisenberger, P.; Togni, A., Mild electrophilic trifluoromethylation of carbonand sulfur-centered nucleophiles by a hypervalent iodine(III)–CF₃ reagent. *Angew. Chem., Int. Ed.* **2007**, *46*, 754–757.

14. Xu, C.; Song, X.; Guo, J.; Chen, S.; Gao, J.; Jiang, J.; Gao, F.; Li, Y.; Wang, M., Synthesis of chloro(phenyl)trifluoromethyliodane and catalyst-free electrophilic trifluoromethylations. *Org. Lett.* **2018**, *20*, 3933–3937.

15. Goossen, L.; Matheis, C.; Wang, M.; Krause, T., Metal-free trifluoromethylthiolation of alkyl electrophiles via a cascade of thiocyanation and nucleophilic cyanide–CF₃ substitution. *Synlett* **2015**, *26*, 1628–1632.