Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Design, synthesis, molecular docking and biological evaluation of 1,2,4 triazole derivatives possessing a hydrazone moiety as

anti-breast cancer agents

Michael Tapera ^a, Hüseyin Kekeçmuhammed ^a, Cansu Umran Tunc ^{b,c}, Aybuke Ulku Kutlu ^{b,c}, İsmail Çelik ^d, Yunus Zorlu ^e, Omer Aydin ^{b,c,f,g}, Emin Sarıpınar ^{a,*}

^a Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey

^b Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Turkey

^c NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, 38039, Kayseri, Turkey

^d Department of Pharmaceutical Chemistry, Faculty of Pharmacy,38039 Erciyes University, Kayseri, Turkey

^e Department of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey

^f ERNAM-Nanotechnology Research and Application Center, Erciyes University, 38039, Kayseri, Turkey

⁹ ERKAM-Clinical Engineering Research and Implementation Center, Erciyes University, 38030, Kayseri, Turkey

*Corresponding Author: Prof. Dr Emin SARIPINAR Address: Erciyes University Department of Chemistry Faculty of Science 38039 Kayseri, TURKEY e-mail: emin@erciyes.edu.tr Phone: +90 352 207 6666

Table of Contents		
Crystal data and structure refinement details for BIH2	S1	
Molecular docking results of most active compound BIH4 and cocrystal ligand of apoptosis regulator Bcl-2 (PDB ID:		
600K)		
Copies of ¹ H and ¹³ C{ ¹ H} NMR spectra of compounds	S3	

Crystallographic data with CCDC reference number 2155032 **BIH2** has been deposited within the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/deposit. Crystallographic data and refinement details of the data collection are presented in supporting information.

Compound	BIH2
CCDC	2155032
Empirical formula	$C_{24}H_{21}N_7O_2$
Formula weight/g. mol ⁻¹	439.48
Temperature/K	298
Radiation, Wavelength (Å)	ΜοΚα (λ = 0.71073)
Crystal system	Monoclinic
Space group	C2/c
a/Å	26.325(4)
b/Å	8.6403(14)
c/Å	22.014(4)
α/°	90
β/°	117.940(2)
γ/°	90
Volume/Å ³	4423.7(12)
Z	8
ρ _{calcd} (g. cm ⁻³)	1.320
μ (mm ⁻¹)	0.089
F(000)	1840
2θ range for data collection (°)	3.502 to 49.992
h/k/l	-31 ≤ h ≤ 31, -10 ≤ k ≤ 10, -26 ≤ l
	≤ 26
Reflections collected	13333
Independent reflections	3877 [R _{int} = 0.0735, R _{sigma} =
	0.0710]
Data/restraints/parameters	3877/0/300
Goodness-of-fit on <i>F</i> ² (S)	1.060
Final R indices [<i>l</i> > 2σ(<i>l</i>)]	R ₁ = 0.0528,
	wR ₂ = 0.1299
R indices (all data)	$R_1 = 0.0939,$
	$wR_2 = 0.1460$
Largest diff. peak/hole / e Å- ³	0.22/-0.16

 Table 1. Crystal data and structure refinement details for BIH2.

Fig. S2. Molecular docking results of most active compound BIH4 and cocrystal ligand of apoptosis regulator Bcl-2 (PDB ID: 600K). (**A**) Binding poses of BIH4 at Bcl-2 active site, (**B**) Schematic protein-ligand 2D interaction diagram of BIH4, (**C**) Superimposition of docked compound BIH4 (purple) and cocrystal ligand of Bcl-2 (yellow), and (**D**) Natural binding pose (yellow) of and re-docking pose (green) of cocrystal ligand (RMSD: 1.57 Å).

Figure 1. ¹H-NMR spectrum of compound BI1

Figure 3. IR spectrum of compound BI1

Figure 4. Mass spectrum of compound BI2

Figure 5. ¹H-NMR spectrum of compound BI2

Figure 6. ¹³C-NMR spectrum of compound BI2

Figure 7. IR spectrum of compound BI2

Figure 8. Mass spectrum of compound BI2

Figure 9. ¹H-NMR spectrum of compound BI3

Figure 10. ¹³C-NMR spectrum of compound BI3

Figure 11. IR spectrum of compound BI3

Figure 12. Mass spectrum of compound BI3

Figure 13. ¹H-NMR spectrum of compound BI4

Figure 14. ¹³C-NMR spectrum of compound BI4

BI4

Figure 16. Mass spectrum of compound BI4

Figure 17. ¹H-NMR spectrum of compound BI5

Figure 18. ¹³C-NMR spectrum of compound BI5

BI5

Figure 20. Mass spectrum of compound BI5

Figure 21. ¹H-NMR spectrum of compound BI6

Figure 22. ¹³C-NMR spectrum of compound BI6

BI6

Figure 23. IR spectrum of compound BI6

Figure 24. Mass spectrum of compound BI6

Figure 25. ¹H-NMR spectrum of compound BIH1

Figure 26. ¹³C-NMR spectrum of compound BIH1

Figure 27. IR spectrum of compound BIH1

Figure 28. Mass spectrum of compound BIH1

BIH2

Figure 29. ¹H-NMR spectrum of compound BIH2

Figure 30. ¹³C-NMR spectrum of compound BIH2

Figure 31. IR spectrum of compound BIH2

Figure 32. Mass spectrum of compound BIH2

Figure 33. ¹H-NMR spectrum of compound BIH3

Figure 34. ¹³C-NMR spectrum of compound BIH3

Figure 35. IR spectrum of compound BIH3

Figure 36. Mass spectrum of compound BIH3

Figure 37. ¹H-NMR spectrum of compound BIH4

Figure 38. ¹³C-NMR spectrum of compound BIH4

Figure 39. IR spectrum of compound BIH4

Figure 41. ¹H-NMR spectrum of compound BIH5

Figure 42. ¹³C-NMR spectrum of compound BIH5

Figure 43. IR spectrum of compound BIH5

Figure 44. Mass spectrum of compound BIH5

Figure 45. ¹H-NMR spectrum of compound BIH6

Figure 46. ¹³C-NMR spectrum of compound BIH6

Figure 47. IR spectrum of compound BIH6

Figure 48. Mass spectrum of compound BIH6