Electronic Supplementary Information for:

Preparation of Amino-Substituted Anthraquinone: Study of the Intersystem Crossing and Application as Efficient Photoinitiators for Photopolymerization

Ruilei Wang,^a Huaiman Cao,^a Jianzhang Zhao^{a*} and Fabiao Yu^{b*}

^a State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China. *E-mail: zhaojzh@dlut.edu.cn (J.Z.)

^b Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, P. R.

China *E-mail: yufabiao@hainmc.edu.cn (F. Y.)

Contents

1. NMR and HRMS Spectra	S3
2. Steady State UV–Vis Absorption and Luminescence Spectra	
3. Photobleaching and photopolymerization	S12
4. DFT computation	S17

1. NMR and HRMS Spectra

Figure S1. ¹H NMR spectrum of compound **AQ-NH-OH-5-CI** (DMSO-*d*₆, 400 MHz).

Figure S2. HRMS ESI⁺ of compound AQ-NH-OH-5-CI.

Figure S3. ¹H NMR spectrum of compound **AQ-NH-OH-8-CI** (DMSO-*d*₆, 400 MHz).

Figure S4. HRMS ESI⁺ of compound AQ-NH-OH-8-CI.

Figure S5. ¹H NMR spectrum of compound AQ-NH-5-CI (CDCl₃, 400 MHz).

Figure S6. HRMS ESI⁺ of compound AQ-NH-5-CI.

Figure S7. ¹H NMR spectrum of compound AQ-NH-8-Cl (CDCl₃, 400 MHz).

Figure S8. HRMS ESI⁺ of compound AQ-NH-8-CI.

Figure S9. ¹H NMR spectrum of compound AQ-1,5-NH (CDCl₃, 400 MHz).

Figure S10. HRMS ESI⁺ of compound **AQ-1,5-NH**.

Figure S11. ¹H NMR spectrum of compound AQ-1,8-NH (CDCl₃, 400 MHz).

Figure S12. HRMS ESI⁺ of compound AQ-1,5-NH.

2. Steady State UV–Vis Absorption and Luminescence Spectra

Figure S13. UV–vis absorption spectra of (a) AQ-1,5-Cl2; (b) AQ-1,8-Cl2; (c) AQ-NH-OH-5-Cl; (d) AQ-NH-OH-8-Cl; (e) AQ-NH-5-Cl; (f) AQ-NH-8-Cl; (g) AQ-1,5-NH and (h) AQ-1,8-NH in different solvents. $c = 1.0 \times 10^{-5}$ M, 20 °C.

Figure S14. UV–vis absorption spectra of **compounds** in (a) cyclohexane (CHX); (b) toluene (TOL); (c) dichloromethane (DCM); (d) acetonitrile (ACN). $c = 1.0 \times 10^{-5}$ M, 20 °C.

Figure S15. Fluorescence emission spectra of (a) **AQ-NH-OH-5-Cl**; (b) **AQ-NH-OH-8-Cl**; (c) **AQ-NH-5-Cl**; (d) **AQ-NH-8-Cl** and (e) **AQ-1,5-NH** in different solvents. Fluorescence emission spectra of compounds in (f) toluene (TOL); (g) dichloromethane (DCM); (h) acetonitrile (ACN); (i) Methanol (MeOH). Optically-matched solutions were used. A = 0.1, $\lambda_{ex} = 500$ nm, 20 °C.

3. Photobleaching and photopolymerization

Figure S16. Steady state photolysis of (a) **AQ-NH-OH-5-CI**; (b) **AQ-NH-OH-8-CI**; (c) **AQ-NH-5-CI**; (d) **AQ-NH-8-CI**; (e) **AQ-1,5-NH** and (f) **AQ-1,8-NH** in deaerated acetonitrile upon the xenon lamp exposure; *c* [photosensitizer]= 5.0×10^{-5} M. UV–vis spectra recorded at different irradiation times. unfiltered white light intensity = 30 mW cm⁻²

Figure S17. Steady state photolysis of (a) **AQ-NH-OH-5-CI/DPI**; (b) **AQ-NH-OH-8-CI/DPI**; (c) **AQ-NH-5-CI/DPI**; (d) **AQ-NH-8-CI/DPI**; (e) **AQ-1,5-NH/DPI** and (f) **AQ-1,8-NH/DPI** in deaerated acetonitrile upon the xenon lamp exposure; *c* [photosensitizer]= 5.0×10^{-5} M, *c* [lod] = 30 mM. Uv–vis spectra recorded at different irradiation times. unfiltered white light intensity = 30 mW cm⁻²

Figure S18. The photopolymerization of PETA under N₂ upon exposure to a 35 W Xenon lamp (unfiltered white light intensity = 200 mW cm⁻²). In the presence of (a) TEA, (c) AQ-1,5-NH, (e) AQ-1,5-NH/TEA, (g) AQ-1,8-NH, (i) AQ-1,8-NH/TEA, (k) AQ-NH-5-Cl, (m) AQ-NH-5-Cl/TEA, (o) AQ-NH-8-Cl, (q) AQ-NH-8-Cl/TEA, (s) AQ-NH-OH-5-Cl, (u) AQ-NH-0H-5-Cl/TEA, (w) AQ-NH-OH-8-Cl and (y) AQ-NH-OH-8-Cl/TEA. The photopolymerization of PETA under N₂ upon exposure to a 35 W Xenon lamp (unfiltered white light intensity = 200 mW cm⁻²). In the presence of (b) TEA, (d) AQ-1,5-NH, (f) AQ-1,5-NH/TEA, (h) AQ-1,8-NH, (j) AQ-1,8-NH/TEA, (l) AQ-NH-5-Cl, (n) AQ-NH-5-Cl/TEA, (p) AQ-NH-8-Cl, (r) AQ-NH-8-Cl/TEA, (t) AQ-NH-OH-5-Cl, (v) AQ-NH-OH-5-Cl/TEA, (x) AQ-NH-OH-8-Cl and (z) AQ-NH-OH-8-Cl/TEA. (photosensitizer: 0.3 wt%; TEA: 6.2 wt%)

Figure S19. The photopolymerization of PETA under N₂ before a 35 W Xenon lamp irradiation (unfiltered white light intensity = 200 mW cm⁻²). In the presence of (a) DPI, (c) AQ-1,5-NH, (e) AQ-1,5-NH/DPI, (g) AQ-1,8-NH, (i) AQ-1,8-NH/DPI, (k) AQ-NH-5-Cl, (m) AQ-NH-5-Cl/DPI, (o) AQ-NH-8-Cl, (q) AQ-NH-8-Cl/DPI, (s) AQ-NH-OH-5-Cl, (u) AQ-NH-0H-5-Cl/DPI, (w) AQ-NH-OH-8-Cl and (y) AQ-NH-OH-8-Cl/DPI. The photopolymerization of PETA under N₂ after a 35 W Xenon lamp irradiation (unfiltered white light intensity = 200 mW cm⁻²). In the presence of (b) DPI, (d) AQ-1,5-NH, (f) AQ-1,5-NH/DPI, (h) AQ-1,8-NH, (j) AQ-1,8-NH/DPI, (l) AQ-NH-5-Cl, (n) AQ-NH-5-Cl/DPI, (p) AQ-NH-8-Cl, (r) AQ-NH-8-Cl/DPI, (t) AQ-NH-OH-5-Cl, (v) AQ-NH-OH-5-Cl/DPI, (x) AQ-NH-OH-8-Cl and (z) AQ-NH-OH-8-Cl/DPI. (photosensitizer: 0.3 wt%; DPI : 6.2 wt%).

PISs	The polymerization time of PETA/min			
b	_c			
DPI	7			
TEA	12			
AQ-1,5-NH	8			
AQ-1,5-NH/DPI	1			
AQ-1,5-NH/TEA	5			
AQ-1,8-NH	6			
AQ-1,8-NH/DPI	0.6			
AQ-1,8-NH/TEA	4			
AQ-NH-5-Cl	10			
AQ-NH-5-CI/DPI	2.8			
AQ-NH-5-CI/TEA	7			
AQ-NH-8-Cl	10			
AQ-NH-8-CI/DPI	3.5			
AQ-NH-8-CI/TEA	5			
AQ-NH-OH-5-Cl	21			
AQ-NH-OH-5-CI/DPI	3.7			
AQ-NH-OH-5-CI/TEA	18			
AQ-NH-OH-8-Cl	30			
AQ-NH-OH-8-CI/DPI	4.7			
AQ-NH-OH-8-CI/TEA	21			

Table S1. The photopolymerization of PETA obtained upon exposure to the Xeon lamp in the presence of anthraquinone derivatives based PISs^a

^a The photopolymerization of PETA under N₂ in the presence of anthraquinone derivatives based PISs (photosensitizer: 0.3 wt%; DPI or TEA: 6.2 wt%) obtained upon exposure to the Xeon lamp, unfiltered white light intensity = 200 mW cm⁻². ^b In the absence of photosensitizer or coinitiator. ^c Can't polymerization.

4. DFT computation

Table S2. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-1,5-NH in gas phase were Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	Cl ^c	Composition ^d
	S ₁	2.53 eV/489 nm	0.24	0.70	H→L
	S ₇	4.25 eV/292 nm	0.18	0.69	H-1→ L+1
AQ-1,5-NH	S ₈	4.47 eV/277 nm	0.08	0.66	H-5→L
	T ₁	1.86 eV/666 nm	0.00	0.70	H→L
	T ₂	1.87 eV/664 nm	0.00	0.70	H-1→L
	T ₃	2.71 eV/458 nm	0.00	0.69	H-2→L
	T ₄	2.91 eV/426 nm	0.00	0.55	H-5→L
	T ₅	2.94 eV/421 nm	0.00	0.57	H-3→L

Table S3. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-1,8-NH in gas phase were Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	CI ^c	Composition ^d
AQ-1,8-NH	S1	2.40 eV/517 nm	0.21	0.70	H→L
	S ₆	4.10 eV/303 nm	0.10	0.67	H→L+1
	S ₇	4.33 eV/286 nm	0.06	0.66	H-1→L+1
	T_1	1.80 eV/691 nm	0.00 ^g	0.70	H→L
	T ₂	1.93 eV/643 nm	0.00 ^g	0.69	H-1→L
	T ₃	2.56 eV/485 nm	0.00 ^g	0.67	H-2→L
	T 4	2.91 eV/425 nm	0.00 ^g	0.54	H-3→L
	T ₅	2.94 eV/421 nm	0.00 ^g	0.55	H-5→L

Table S4. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-NH-5-Cl in gas phase were Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	Cl ^c	Composition ^d
AQ-NH-5-Cl	S ₁	2.56 eV/484 nm	0.13	0.70	H→L
	S ₄	3.63 eV/341 nm	0.05	0.68	H-2→L
	S_6	3.86 eV/321 nm	0.06	0.53	H→L+1
	T_1	1.80 eV/687 nm	0.00 ^g	0.70	H→L
	T ₂	2.38 eV/520 nm	0.00 ^g	0.67	H-1→L
	T ₃	2.84 eV/437 nm	0.00 ^g	0.39	H-3→L
	T ₄	2.92 eV/425 nm	0.00 ^g	0.67	H-4→L
	T₅	3.03 eV/409 nm	0.00 ^g	0.46	H-2→L

Table S5. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-NH-8-Cl in gas phase were Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	Cl ^c	Composition ^d
AQ-NH-8-CI	S ₁	2.52 eV/492 nm	0.12	0.70	H→L
	S ₄	3.64 eV/341 nm	0.04	0.67	H-2→L
	S ₆	3.84 eV/323 nm	0.05	0.50	H-4→L
	T ₁	1.77 eV/700 nm	0.00	0.70	H→L
	T ₂	2.49 eV/497 nm	0.00	0.66	H-1→L
	T ₃	2.77 eV/448 nm	0.00	0.64	H-3→L
	T 4	2.81 eV/441 nm	0.00	0.35	H-4→L
	T ₅	2.99 eV/414 nm	0.00	0.41	H-2→L

Table S6. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-NH-OH-5-CI in gas phase were Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	Cl ^c	Composition ^d
	S1	2.56 eV/485 nm	0.13	0.70	H→L
	S 4	3.63 eV/341 nm	0.05	0.68	H-2→L
	S ₆	3.85 eV/322 nm	0.06	0.53	H→L+1
	T ₁	1.80 eV/689 nm	0.00	0.70	H→L
AQ-NH-OH-5-CI	T ₂	2.38 eV/521 nm	0.00	0.67	H-1→L
	T ₃	2.84 eV/437 nm	0.00	0.41	H-3→L
	T ₄	2.93 eV/423 nm	0.00	0.66	H-4→L
	T ₅	3.03 eV/409 nm	0.00	0.45	H-2→L

Table S7. Electronic Excitation Energies (eV) and Corresponding Oscillator Strengths (f), Main Configurations, and CI Coefficients of the Low-Lying Electronic Excited States of AQ-NH-OH-8-CI in gas phase are Presented. All Parameters were Calculated by B3LYP/6-31G(d). Base on the optimized ground state geometry.

	State	Energy ^a	f ^b	Cl ^c	Composition ^d
	S ₁	2.52 eV/493 nm	0.12	0.70	H→L
	S 4	3.64 eV/340 nm	0.04	0.66	H-2→L
	S ₆	3.83 eV/324 nm	0.06	0.51	H-4→L
	T ₁	1.76 eV/703 nm	0.00	0.70	H→L
ΑQ-ΝΠ-ΟΠ-δ-CΙ	T ₂	2.50 eV/496 nm	0.00	0.66	H-1→L
	T ₃	2.77 eV/447 nm	0.00	0.64	H-3→L
	T ₄	2.81 eV/442 nm	0.00	0.36	H-4→L
	T_5	2.99 eV/414 nm	0.00	0.41	H-2→L

Figure S20. Electron spin density surfaces of the triplet state of (a) **AQ-NH-OH-5-Cl**, (b) **AQ-NH-5-Cl**, (c) **AQ-NH-OH-8-Cl** and (d) **AQ-NH-8-Cl** calculated by DFT (B3LYP/6-31G (d)) in vacuum with Gaussian 09. isovalue = 0.0004.