Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Removal of Cd²⁺ from Zinc Smelter Wastewater Using Graphene Oxide Foam Cross-Linked with Epichlorohydrin: Comprehensive Optimization, Isotherm, Kinetic and Real Water Column Studies

Lakshmi Prasanna Lingamdinne^a, Ganesh Kumar Reddy Angaru^a, Yeeun Jeon^a, Suhyun Lee^a, Janardhan Reddy Koduru^a*, Jae-Kyu Yang^a, Yoon-Young Chang^a*

^a Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

*Corresponding author: reddyjchem@gmail.com (JR Koduru), yychang@kw.ac.kr (YY Chang),

2.1. Materials and Characterization techniques

2.1.1 Materials

All reagents used in the present study, including Cadmium Nitrate ($Cd(NO_3)_2$), acetic acid, sodium hydroxide (NaOH), hydrochloric acid (HCl), sodium chloride (NaCl), calcium chloride (CaCl₂), magnesium chloride (MgCl₂),sodium carbonate (Na_2CO_3) , sodium nitrate (NaNO₃), sodium sulfate (Na₂SO₄), and sodium phosphate (Na₃PO₄), were of analytical grade and were purchased from Samchun Chemicals in South Korea. GO was supplied by the Stranded Graphene Company (South Korea). Chitosan was purchased from Sigma-Aldrich (United).

2.1.2 Analytical studies

X-ray Diffraction analysis was analyzed in the 2θ range of $0-80^{\circ}$ with Cu K α radiation to identify the crystalline/amorphous nature of the GO, CSGO foam, and EPCSGO foam. The presence of different functional groups was detected using Fourier transform infrared (FT-IR) spectrometry (IR Spirit, Shimadzu Corporation, Japan) in the range 4000–400 cm–1 and X-ray photoelectron spectroscopy (XPS) (PHI Quantera-II, Ulvac-PHI, Kanagawa, Japan). Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) (S-4300 with QUANTAX EDS, Bruker, Germany) was used to investigate the surface morphologies of the CSGO and EPCSGO foams. The N₂ adsorption & desorption isotherms of the fabricated composite were obtained using an Autosorb-1 (Quantachrome Instruments, Boynton Beach, FL, USA) instrument, which was also used to measure the pore size, surface area, and pore width. Inductively coupled plasma-optical emission spectroscopy (ICP-OES; Perkin-Elmer, USA) was used to measure metal concentration. A 340i pH meter was employed to measure all pH readings (WTW, Germany).

Fig. S1.TGA of GO, CS, CSGO foam and EPCSGO foam. Analyzed at a heating rate of 10 °C min⁻¹.

Fig. S2. Cd^{2+} adsorption isotherm on GO powder and CS foam (0.5 g/L), at 298 K, pH 6.0 for 300 min equilibrium time.

Fig. S3. Salt effect on Cd^{2+} (20 mg/L) adsorption on CSGO foam and EPCSGP foam (0.5 g/L), at pH 6.0 and 298K.

Table S1. Heavy metal concentrations in a groundwater sample from the smelter, compared to Korean industrial wastewater effluent standards and Korean drinking water quality standards (Korea Ministry of Environment).

Factor	Concentration in groundwater (mg/L)
Cd	81.81
Zn	988.7
Fe	39.6
Mn	113.0
Cu	3.7
Al	119.8
К	38.9
Na	125.8
Ca	227.3
Mg	133.9
SO4 ²⁻	5120
Cŀ	96
NO ₃ -	23.3
$\mathrm{NH_4}^+$	21.30
ТОС	1.9

Table S2. Thermodynamic studies of Cd^{2+} on EPCSGO foam (pH = 6.0 and dose = 0.5 g /L)

Temperature,	$\Delta G^{\circ} = -RT \ln K_{c}$	(ΔH°) ,	$(\Delta S^{\circ}),$	lnKc
K	(kJ/mol)	kJ/mol	J/mol. K	
298	-38.885	33.831	122.66	13.120
308	-40.637			13.526
323	-43.668			13.931

Fig. S4. Cd^{2+} desorption on EPCSGO foam with different desorption reagents (a), Cd^{2+} adsorption and desorption on EPCSGP foam with 0.1 M EDTA.

Fig. S5. (a)Cd²⁺, (b)Mn²⁺ and (c)Zn²⁺ removal after injection of various concentration of NaHCO₃ into the industrial smelt wastewater.

	Thomas			Bohart–Adams			Yoon-Nelson		
	k _{Th} (L/ mg·h)	Q _{Th} (mg/g)	R ²	k _{ab} (L/mg∙h)	Q _{ab} (mg/c m ³)	R ²	k _{YN} (h ⁻¹)	τ (h)	R ²
Synthetic water	0.003	122.08	0.992	0.002	25.41	0.914	0.073	692	0.955
Industrial waste water	0.25	35.95	0.989	0.114	0.54	0.916	0.008	299	0.955

Table S3. Modeling of Cd²⁺ removal in a fixed bed column utilizing EPCSGO foam.