Ultrathin Pt₃Pb nanowires prepared in aqueous phase for enhanced

methanol electrooxidation

Yaming Liu,^{*a,b} Meng Wu,^a Shanxiang Sheng,^a Yongzhen Wang,^{a,b} Chao Zhi,^{a,b}

Jiaguang Meng,^{a,b} and Xiang Li^c

^a School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an,

Shaanxi 710048, China.

^b Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, China.

^c Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China

*Address correspondence to: <u>liuym2020@xpu.edu.cn</u>

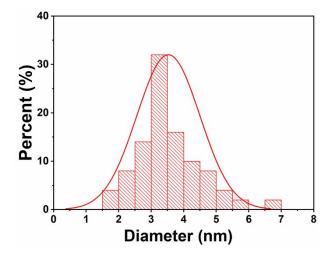


Figure S1. Histogram of the diameter of Pt₃Pb NWs by measuring about 200 NWs.

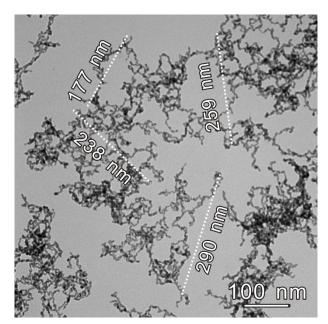


Figure S2. TEM of Pt₃Pb NWs for qualitativly analyzing of the length of nanowires.

Figure S3. ECSAs of Pt_3Pb NWs and commercial Pt/C in 0.1 M HClO₄ solution at a sweep rate of 50 mV s⁻¹.

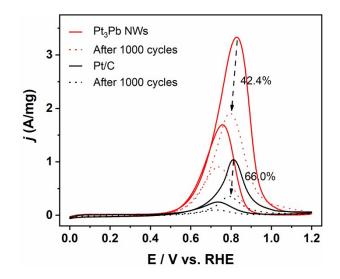


Figure S4. Recycling stability of Pt₃Pb NWs and Pt/C.

Sample	Pt (At %)	Pb (At %)
Pt ₃ Pb NWs	74.56	25.44