Synthetic, spectral, structural and catalytic activity of 3-D metal formats/acetates framework materials for CO₂ conversion

Manoj Trivedi,^{a*} Gurmeet Singh,^a Raj Kishore Sharma,^a Nigam P. Rath,^{b*} Ahmed Husain,^c

^aDepartment of Chemistry, University of Delhi, Delhi-110007, INDIA

^bDepartment of Chemistry & Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA

^cDepartment of Chemistry, DAV University Jalandhar, Punjab-144012, India

E-mail address: manojtri@gmail (M.T.); rathn@umsl.edu(NPR).

Corresponding author. Tel.: + 91 9811730475 (MT); (314) 516-5333 (NPR).

Supplementary Information

Table 1. Crystallographic data for 1, and 2.

Enpirical FormulaClaGoQuClaFupOrtaNNi2FW189.61495.64FWMonoclinicMonoclinicerystal systemMonoclinicClaCaa,A849551516.641(2)a,Å7.0739(14)17.787(3)c,Å94178(18)80993(12)c,Å9090a,deg9090β,deg9090γ,deg9090γ,deg61.73(18)1920.1(5)Z44dato g em ⁻³ 2421715μ,mm ⁻¹ 10021002r, f10020.864r, all0.2710.864wR20.5521.952wR2 [1 > 20(1)0.5650.1740			
FW189.61495.64crystal systemMonoclinicMonoclinicspace group 21_1c C12/c 1a, Å8.4950.1514.641(2)b, Å7.0739(14)17.787(3)c, Å9.4178(18)8.0993(12)c, Å990c, Å9.021(5)11.4446(5)c, Å9.021(5)14.446(5)c, Å9.173(18)192.01(5)c, Å2.421.715d _{ales} g cm ⁻³ 2.422.041r, Martin1.002)1.002r, fil0.0210.0864k ₁ [1 > 2o(1)]0.0520.152w ₂ [1 > 2o(1)]0.0550.1740	Empirical Formula	C ₂ H ₆ O ₆ Cu	$C_{12}H_{19}O_{12}NaNi_2$
crystal systemMonoclinicMonoclinicspace group21/cC 12/c 1a, Å8.4955(15)14.641(2)b, Å7.0739(14)17.787(3)c, Å9.01738.0993(12)c, Å9090α, deg9090β, deg7.021(5)14.446(5)γ, deg9090V, Å ³ 61.73(18)920.1(5)Z4920.1(5)L2.4241.715u, nm ⁻¹ 3.8462.041r, K100(2)100(2)R ₁ all0.2710.864wa20.5920.1952wa2 [1 > 2o(1)0.5650.1740	FW	189.61	495.64
space groupP2/cC 12/c 1a, Å8.4955(15)14.641(2)b, Å7.0739(14)17.787(3)c, Å9.4178(18)8.0993(12)α, deg99β, deg9.021(5)14.446(5)γ, deg909γ, deg9090γ, deg9090γ, deg661.73(18)1920.1(5)Z44dach g cm ⁻³ 2.421.715μ, mm ⁻¹ 3.8462.041γ, fk100(2)100(2)R ₁ all0.2710.0864wa20.5920.1952wa2 [1 > 20(1)]0.5550.1740	crystal system	Monoclinic	Monoclinic
a, Å84955(15)14.641(2)b, Å7.0739(14)17.787(3)c, Å9.4178(18)8.0993(12)α, deg9090β, deg90.21(5)114.446(5)γ, deg9090V, Å'3561.73(18)1920.1(5)Z44date, g cm³2.2421.715µ, mm¹3.8462.041T, K100(2)100(2)R ₁ all0.2710.864wR20.5920.1952wR2 [1> 2σ(1)]0.5650.1740	space group	$P2_1/c$	<i>C</i> 12/c 1
b, Å7.0739(14)17.787(3)c, Å9.4178(18)8.0993(12)α, deg9090β, deg90.14.446(5)γ, deg9090V, Å'3561.73(18)1920.1(5)Z44deale, g cm-32.2421.715μ, mm ⁻¹ 3.8462.041T, K100(2)100(2)R ₁ [1 > 2σ(1)]0.2180.0864wR20.5920.1952wR2 [1 > 2σ(1)]0.5650.1740	a, Å	8.4955(15)	14.641(2)
c, Å9.4178(18)8.0993(12)α, deg9090β, deg7.021(5)14.446(5)γ, deg9090V, Å'3561.73(18)92.01(5)Z44deate, g cm ⁻³ 2.4221.715μ, mm ⁻¹ 3.8462.041T, K100(2)100(2)R ₁ all0.02710.0864NR ₂ 0.5920.1952wR ₂ 0.5550.1740	b, Å	7.0739(14)	17.787(3)
α, deg9090β, deg7.021(5)14.446(5)γ, deg9090γ, deg9090V, Å'3561.73(18)1920.1(5)Z44dcale, g cm'32.421.715μ, mm'13.8462.041T, K1002010020R, all0.2710.0864R, [1 > 2σ(1)]0.5920.1952wR20.5550.1740	c, Å	9.4178(18)	8.0993(12)
β, deg97.021(5)114.44(5)γ, deg9090V, ų561.73(18)1920.1(5)Z44deater g cm⁻³2.421.715µ, mm⁻¹3.8462.041T, K100(2)100(2)R₁ all0.02710.0864N20.05920.1952wR20.05550.1740	α, deg	90	90
γ , deg9090 v , Ag561.73(18)1920.1(5) Z 44 $d_{cale.}$ g cm ⁻³ 2.2421.715 μ , mm ⁻¹ 3.8462.041 T, K 100(2)100(2) R_1 all0.02710.0864 wR_2 0.05920.1952 wR_2 [1 > 2 σ (1)]0.05650.1740	β, deg	97.021(5)	114.446(5)
V, ų561.73(18)1920.1(5)Z44dealer, g cm³2.2421.715µ, mm¹3.8462.041T, K100(2)100(2)R_1 all0.02710.0864NR_20.05920.1952wR_2 [1 > 2\sigma(1)]0.05650.1740	γ, deg	90	90
Z44 $d_{ale}, g cm^{-3}$ 2.2421.715 μ, nm^{-1} 3.8462.041T, K100(2)100(2)R_1 all0.02710.0864 $n_1 [1 > 2\sigma(1)]$ 0.05920.1952 wR_2 0.05920.1952	V, Å ³	561.73(18)	1920.1(5)
$d_{calc}, g cm^{-3}$ 2.2421.715 μ, mm^{-1} 3.8462.041T, K100(2)100(2) R_1 all0.02710.0864 $R_1 [I > 2\sigma(I)]$ 0.05920.1952 wR_2 0.05950.1740	Z	4	4
μ , mm ⁻¹ 3.8462.041T, K100(2)100(2)R_1 all0.02710.0864R_1 [I > 2\sigma(I)]0.02180.0686wR_20.05920.1952wR_2 [I > 2\sigma(I)]0.05650.1740	d _{cale} , g cm ⁻³	2.242	1.715
T, K100(2)100(2) R_1 all0.02710.0864 R_1 [I > 2 σ (I)]0.02180.0686wR_20.05920.1952wR_2 [I > 2 σ (I)]0.05650.1740	μ, mm ⁻¹	3.846	2.041
R_1 all0.02710.0864 R_1 [I > 2 σ (I)]0.02180.0686 wR_2 0.05920.1952 wR_2 [I > 2 σ (I)]0.05650.1740	Т, К	100(2)	100(2)
$R_1 [I > 2\sigma(I)]$ 0.02180.0686 wR_2 0.05920.1952 $wR_2 [I > 2\sigma(I)]$ 0.05650.1740	R ₁ all	0.0271	0.0864
wR_2 0.05920.1952 $wR_2 [I > 2\sigma(I)]$ 0.05650.1740	$R_1 [I > 2\sigma(I)]$	0.0218	0.0686
$wR_2 [I > 2\sigma(I)]$ 0.0565 0.1740	wR ₂	0.0592	0.1952
	$wR_2 [I > 2\sigma(I)]$	0.0565	0.1740
GOF on F^2 1.070 1.349	GOF on F^2	1.070	1.349

Complex-1		Complex-2	
Cu(1)-O(5) ^{#1}	1.9659(10)	Ni(1)-Ni(1)	2.5885(11)
Cu(1)-O(5)	1.9659(10)	Ni(1)-Na(1)	3.3712(14)
Cu(1)-O(1)	2.0079(9)	Ni(1)-O(1)	1.953(3)
Cu(1)-O(1) ^{#1}	2.0079(9)	Ni(1)-O(2)	1.977(4)
Cu(1)-O(6) ^{#2}	2.3314(10)	Ni(1)-O(3)	2.159(3)
Cu(1)-O(6) ^{#3}	2.3314(10)	Ni(1)-O(5)	1.956(3)
Cu(2)-O(4)#4	1.9499(10)	Ni(1)-O(6)	1.958(3)
Cu(2)-O(4)	1.9499(10)	Na(1)-O(2)	2.364(4)
Cu(2)-O(3)#4	2.0074(11)	Na(1)-O(3)	2.406(3)
Cu(2)-O(3)	2.0074(11)	Na(1)-O(4)	2.402(4)
Cu(2)-O(2)	2.3900(11)	O(1)-C(1)	1.262(6)
Cu(2)-O(2) ^{#4}	2.3900(11)	O(2)-C(1)	1.264(6)
O(1)-C(1)	1.2732(15)	O(3)-C(3)	1.247(6)
O(2)-C(1)	1.2482(16)	O(4)-C(3)	1.306(6)
O(5)-C(2)	1.2773(15)	O(5)-C(5)	1.270(6)
O(6)-C(2)	1.2424(16)	O(6)-C(5)	1.260(6)
O(6)-Cu(1) ^{#5}	2.3314(10)	Ni(1)-Ni(1)-Na(1)	124.31(4)
O(5) ^{#1} -Cu(1)-O(5)	180.0	O(1)-Ni(1)-Ni(1)	86.49(10)
O(5)#1-Cu(1)-O(1)	87.54(4)	O(1)-Ni(1)-Na(1)	145.97(10)

Table 2. Selected bond lengths (Å), and bond angles (°) for 1, and 2.

O(5)-Cu(1)-O(1)	92.46(4)	O(1)-Ni(1)-O(2)	169.48(14)
O(5)#1-Cu(1)-O(1) ^{#1}	92.46(4)	O(1)-Ni(1)-O(3)	103.89(13)
O(5)-Cu(1)-O(1) ^{#1}	87.54(4)	O(1)-Ni(1)-O(5)	90.35(15)
O(1)-Cu(1)-O(1) ^{#1}	180.0	O(1)-Ni(1)-O(6)	88.65(16)
O(5) ^{#1} -Cu(1)-O(6) ^{#2}	89.41(4)	O(2)-Ni(1)-Ni(1)	83.07(10)
O(5)-Cu(1)-O(6) ^{#2}	90.59(4)	O(2)-Ni(1)-Na(1)	43.41(10)
O(1)-Cu(1)-O(6) ^{#2}	92.42(4)	O(2)-Ni(1)-O(3)	86.52(13)
O(1)#1-Cu(1)-O(6) ^{#2}	87.58(4)	O(3)-Ni(1)-Ni(1)	169.52(9)
O(5)#1-Cu(1)-O(6)#3	90.59(4)	O(3)-Ni(1)-Na(1)	45.31(9)
O(5)-Cu(1)-O(6)#3	89.41(4)	O(5)-Ni(1)-Ni(1)	85.23(11)
O(1)-Cu(1)-O(6)#3	87.58(4)	O(5)-Ni(1)-Na(1)	105.01(11)
O(1)#1-Cu(1)-O(6)#3	92.42(4)	O(5)-Ni(1)-O(2)	90.03(16)
O(4)-Cu(2)-O(3)	90.79(4)	O(5)-Ni(1)-O(3)	96.04(13)
O(4)-Cu(2)-O(2)	90.40(4)	O(5)-Ni(1)-O(6)	169.59(14)
O(3)-Cu(2)-O(2)	86.64(4)	O(6)-Ni(1)-Ni(1)	84.37(11)
C(1)-O(1)-Cu(1)	126.05(9)	O(6)-Ni(1)-Na(1)	81.29(11)
C(1)-O(2)-Cu(2)	129.33(9)	O(6)-Ni(1)-O(2)	89.07(16)
O(2)-C(1)-O(1)	123.92(13)	O(6)-Ni(1)-O(3)	94.25(14)
O(6)-C(2)-O(5)	123.51(11)	Ni(1)-Na(1)-Ni(1)	124.29(8)
		O(2)-Na(1)-Ni(1)	35.06(9)
		O(2)-Na(1)-Ni(1)	106.14(12)

O(2)-Na(1)-O(3)	110.00(13)
O(2)-Na(1)-O(4)	150.75(12)
O(3)-Na(1)-Ni(1)	144.10(11)
O(4)-Na(1)-Ni(1)	118.65(9)
C(1)-O(1)-Ni(1)	121.8(3)
Ni(1)-O(2)-Na(1)	101.53(15)

D-H…A-X	d H⋯A Å	D D…A Å	θ D-H···A°
Complex-1			
C(1)-H(1)O(5)	2.427(17)	3.0163(17)	119.4(13)
C(2)-H(2)O(6) ^{#2}	2.390(18)	2.9408(18)	115.9(12)
O(4)-H(4A)O(2) ^{#6}	1.80(2)	2.6652(14)	174(2)
O(4)-H(4B)O(6) ^{#7}	1.86(2)	2.7105(14)	169(2)
O(3)-H(3A)O(1)	1.92(2)	2.7301(15)	168(2)
O(3)-H(3A)O(2)	2.60(2)	3.0299(15)	113.6(17)
O(3)-H(3B)O(5) ^{#7}	1.94(2)	2.7549(14)	175(2)

Table 3. Hydrogen bond parameters for 1, and 2.

Symmetry transformations used to generate equivalent atoms: ^{#2} -x+2,y+1/2,-z+3/2; ^{#6}-x+1,y+1/2,-z+3/2; ^{#7} x,y+1,z.

Complex-2			
O(4)-H(4)O(4) ^{#4}	1.18(2)	2.3529(14)	180(2)
C(2)-H(2C)O(6) ^{#5}	2.41(2)	3.3007(15)	150(2)
C(4)-H(4B)O(5)#6	2.57(2)	3.5105(15)	162(2)

Symmetry transformations used to generate equivalent atoms: #4 1-x,-y,-2-z;

^{#5}1/2+x,1/2-y,-1/2+z; ^{#6} x,-y,-1/2+z.

Figure S1.Packing diagram down *b*- axis in compound **1**.

Figure S2. Packing diagram down *b*-axis without water in compound 1.

•

Figure S3. Channels formed down the *c*-axis in 2.

Figure S4. Elipsoidal (adp) molecular view of $[Cu_2(HCO_2)_2(H_2O)_2]_n$ (1), and $[Na{Ni(CH_3CO_2)_2(CH_3CO_2H)}]_n$ (2). Colour code: Cu (green), Ni (cyan), Na (yellow), C (grey) and O (red). H-atoms are omitted for the clarity of the picture.

 $[Na{Ni(CH_3CO_2)_2(CH_3CO_2H)}]_n$ (2) recorded under nitrogen flow.

Figure S6. N_2 adsorption and desorption isotherm at 77K of 1 and 2.

Figure S7. Histogram of recyclability study (five cycles) for catalytic activities of **1** and **2** in coupling of glycidol with CO₂.

Figure S8. Powder XRD pattern of **1** after the catalytic reaction for coupling of glycidol with CO_2 . (Simulated = theoretical profile based on the structures determined by single-crystal XRD; Observed= experimental data).

Figure S9. Powder XRD pattern of **2** after the catalytic reaction for coupling of glycidol with CO₂. (Simulated = theoretical profile based on the structures determined by single-crystal XRD; Observed= experimental data).

Figure S10. The proposed mechanism for the cycloaddition reaction of epoxide and CO_2 to form cyclic carbonates catalyzed by 2.

Entry	MOFs	Co-catalyst	Reaction conditions	%	Ref.
			T[K]/P[atm]/Time[h]	yield	
1.	[Cu ₃ (BTC) ₂] or HKUST-1	n-Bu₄NBr	273/1 atm./48h	49	1
2.	$[Cu_2(BPTC)(H_2O)_2]$ or MOF-505	n-Bu₄NBr	273/1 atm./48h	48	1
3.	[CuL1] or BIT-C	n-Bu₄NBr	333/1 atm./6h	95-99	2
4.	$[Cu(HIP)_2(BPY)]$	-	393/12 atm./6h	10-73	3
5.	Cu ₂ (Cu-TACTMB)(H ₂ O) ₃ (NO ₃) ₂ or	n-Bu ₄ NBr	273/1 atm/48h	42-95	1
	MMCF-2				
6.	$Cu_6(Cu-TDPBPP)(HCO_2)_4(H_2O)_6$ or	n-Bu ₄ NBr	273/1 atm/48h	30-87	4
-	MMPF-9		070/1 / //01	00.06	-
7.	Cu_4MTTP	$n-Bu_4NBr$	2/3/1 atm/48h	83-96	5
8.	$[Cu_7(H_1L)_2(TPT)_3(H_2O)_6]$	$n-Bu_4NBr$	3/3/9.86 atm/3-12h	>99	6
9.	$[Cu_2(C_{20}H_{12}N_2O_2)(COO)_4]_n$	n-Bu ₄ NBr	273/1 atm/48h	88-96	7
10.	[Cu-ABF@ASMNPs]	DBU	353/1atm/12h	89-92	8
11.	$[Cu_{24}(BDPO)_{12}(H_2O)_{12}]$ ·30DMF·14H ₂ O or (JUC1000)	TBABr	298/1 atm/48	29-96	9
12.	$[Cu_2 (BDC)_2 (DABCO)]$	-	373/8 atm./12h	13	10
14.	FJI-H14	n-Bu ₄ NBr	353/0.15 atm/24h	27-95	11
15.	$\{[Cu_6(L)_3(H_2O)_6].(14DMF)(9H_2O)\}_n$	n-Bu ₄ NBr	298/1 bar/8-24h	30-95	12
16.	$[Cu_{5}(TPTC)_{3}(BPDC-NH_{2})_{0.5}(H_{2}O)_{5}](1-NH_{2})$	n-Bu ₄ NBr	298/1 atm/36h	50	13
17.	$[Cu_5(TPTC)_3(BPDC-Urea)_{0.5}(H_2O)_5] (1-Urea)$	n-Bu ₄ NBr	298/1 atm/36h	19-98	13
18.	$[Cu_2(OAc)_4(\mu_4-hmt)_{0.5}]_n$	n-Bu ₄ NBr	273/1 atm./18h	87-96	14
19.	$[Cu{C_6H_4(COO-)_2}_2]_n.2C_9H_{14}N_3$	n-Bu₄NBr	273/1 atm./18h	60-80	14
20.	[Cd ₂ (Ni(salen))(DMF) ₃]·4DMF·7H ₂ O	n-Bu₄NBr	353/1MPa/12h	54-99	15
21.	$M_2(EDOB)$ [EDOB ₄ ⁻ = 4,4'-(ethyne-1,2-	n-Bu₄NBr	353/1 atm/12h	35-86	16
	diyl)bis(2-oxidobenzoate), M = Mg, Ni, Co,	т			
	Zn, Cu, Fe]				
22.	$[Cu_2(HCO_2)_2(H_2O)_2]_n$	n-Bu ₄ NBr	273/1 atm./12h	66-87	Present work
23.	$[Na{Ni(CH_3CO_2)_2(CH_3CO_2H)}]_n$	n-Bu ₄ NBr	273/1 atm./12h	86-98	Present work

Table 4. Comparative catalytic performance of the 1 and 2 with others previouslyreported MOFs catalysts for cycloaddition of epoxides with CO_2 .

4-methyl-1, 3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 1.49 (d, J=6.8 Hz, 3H), 4.06 (t, J=4.5 Hz, 1H), 4.73 (t, J=8.4 Hz, 1H), 4.86-4.93 (m, 1H); ¹³C NMR (400 MHz, CDCl₃): 19.15, 70.53, 73.48, 154.95; GC-MS (EI) m/z (%):102 (M⁺, 100).

4-ethyl-1, 3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): *δ* 1.04 (t, J=1.5Hz, 3H), 1.73-1.86 (m, 2H), 4.09 (t, J=8Hz, 1H), 4.53 (t, J=4.4Hz, 1H), 4.61 (q, J=3.6Hz, 1H) ; ¹³C NMR (400 MHz, CDCl₃): 155.08, 76.40, 68.04, 26.67, 8.36; GC-MS (EI) m/z (%):116 (M⁺, 100).

4-(chloromethyl)-1, 3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 3.67-3.80 (m, 2H), 4.01 (dd, J = 3.6, 3.2 Hz, 1H), 4.58 (t, J = 1.0 Hz, 1H), 4.89-4.98 (m, 1H); ; ¹³C NMR (400 MHz, CDCl₃): 43.83, 66.84, 75.48, 154.28; GC-MS (EI) m/z (%):137 (M⁺, 100).

4-(bromomethyl)-1, 3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 3.45-3.52 (m, 2H), 4.27-4.35 (dd, J = 13.7, 7.3 Hz, 1H), 4.58 (t, J = 1.0 Hz, 1H), 4.86-4.88 (m, 1H); ; ¹³C NMR (400 MHz, CDCl₃): 31.32, 68.05, 73.92, 154.09; GC-MS (EI) m/z (%):181 (M⁺, 100).

4-(hydroxymethyl)-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 4.80-4.82 (m, 1H), 4.14-4.21 (m, 2H), 4.01-4.02 (m, 1H), 3.30-3.58 (m, 1H), 2.45-2.50 (m, 1H); ¹³C NMR (400 MHz, CDCl₃): 38.87, 39.08, 39.29, 39.50, 39.91, 40.41, 60.61, 65.88, 155.20; GC-MS (EI) m/z (%):118 (M⁺, 100).

References:

- W.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P.J. Perez, L. Wojtas, J. Cai, Y.-S. Chen, S. Ma, *Angew. Chem.*, *Int. Ed.* 2014, **53**, 2615.
- B. Zou, L. Hao, L.F. Zhi, M. G. Shi, L.C. Hui, L. Chang, W. Hu, *Journal of Catalysis* 2015, **329**, 119.
- 3. S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, *Science* 1999, **283**, 1148.
- 4. W.Y. Gao, L. Wojtas, S. Ma, Chem. Commun. 2014, 50, 5316.
- P.-Z. Li, X.-J. Wang, J. Liu, J.S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2016, 138, 2142.
- J. Ai, X. Min, C.-Y. Gao, H.-R. Tian, S. Dang, Z.-M. Sun, *Dalton Trans.*, 2017, 46, 6756.
- P.-Z. Li, X.-J. Wang, J. Liu, H. S. Phang, Y. Li, Y. Zhao, *Chem. Mater.* 2017, 29 (21), 9256.
- R.K. Sharma, R. Gaur, M. Yadav, A. Goswami, R. Zbořil, M.B. Gawande, *Sci. Rep.* 2018, 8, 1901.
- H. He, Q. Sun, W. Gao, J.A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma, *Angew. Chem. Int. Ed.* 2018, 57, 4657
- C.-Y. Gao, H.-R. Tian, J. Ai, L.-J. Li, S. Dang, Y.-Q. Land, Z.-M. Sun, Chem. Commun. 2016, 52, 11147.
- L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, *Nature Communications* 2017, 8, 1233.
- 12. V. Sharma, D. De, R. Saha, R. Das, P.K. Chattaraj, P.K. Bharadwaj, *Chem. Commun.*, 2017, **53**, 13371.

- 13. L.-Q. Wei, B.-H. Ye, Inorg. Chem. 2019, 58, 4385.
- Bhaskaran, M. Trivedi, A.K. Yadav, G. Singh, A. Kumar, G. Kumar, A. Husain, N.P. Rath, *Dalton Trans.*, 2019, 48, 10078.
- Y. Fan, J. Li, Y. Ren, H. Jiang, European Journal of Inorganic Chemistry, 2017, 4982.
- Y.B.N. Tran, P.T.K. Nguyen, Q.T. Luong, K.D. Nguyen, *Inorg. Chem.* 2020, 59, 22, 16747.