Supporting Information

Highly efficient and stable hydrodechlorination of chlorophenols

in flow Pd-Ce/SiO₂/Ni foam reactor

Ruijie Cheng, Linyu Li, Lizhi Tan, Haozhen Feng, Guangyan Xiang, Jun Xiong* Department of Pharmaceutical Engineering, School of Pharmacy and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China

* Corresponding author. Tel: +86 0851 28642341

E-mail: xiongjun@zmu.edu.cn (J. Xiong)

Fig. S1: XRD patterns of Ni foam (a), SiO₂/Ni foam (b), Pd/Ni foam (c), Pd/SiO₂/Ni foam (d) and Pd-Ce/SiO₂/Ni foam (e).

External and internal mass transfer in flow Pd-based Ni foam reactor

External mass transfer limitation

The dimensionless Carberry numbers, defined as the ratio between the observed reaction rate (r_{obs}) and the maximum transfer rate of the reactants were calculated to evaluate the external mass transfer limitation. The overall gas–liquid mass transfer coefficient between the rather insoluble H₂ gas and water is approximately equal to the liquid-side mass transfer coefficient, because the gas phase mass transfer resistance is far less than the liquid phase mass transfer resistance [1]. Therefore, the Carberry numbers for gas-liquid (Ca_{G-L}) and liquid-solid (Ca_{L-S}) mass transport are expressed as follows [2,3]:

$$Ca_{G-L} = \frac{r_{obs}}{(k_L a_{GL})C^*}$$
$$Ca_{L-S} = \frac{r_{obs}}{(k_{LS} a_{LS})C_b}$$

The value of the gas-liquid mass transfer coefficient ($k_L \alpha_{GL}$) was estimated by the correlation consisting of Sherwood (*Sh*), Reynolds (*Re*) and Schmidt (*Sc*) numbers [1]:

$$\frac{a_{GL}\varepsilon_L}{a_p}Sh = 0.0037Re_L^{1.4}Sc_L^{0.5}$$
$$Sh = \frac{k_L d_p}{D}$$
$$Re_L = \frac{d_p u_L \rho_L}{\mu_L}$$
$$Sc_L = \frac{\mu_L}{\rho_L D}$$

Where α_{GL} is the interfacial gas-liquid area per unit volume of liquid, k_L is the liquid side mass transfer coefficient, ε_L is the liquid hold-up, measured by the method reported previously[1], α_p is the specific surface area of foam bed (per unit of bed volume), d_p is the characteristic length of the foam bed, ρ_L is the liquid density, μ_L is the liquid viscosity, u_L is the liquid superficial velocity, D is the diffusion coefficients evaluated by Wilke-Chang equation [4]:

$$D = 7.4 \times 10^{-8} \frac{(\varphi M_L)^{0.5} T}{\mu_L V_i^{0.6}}$$

Where the volumes of hydrogen and 4-chlorophenol in water at normal boiling temperature (V_i) are 14.3 and 123 cm³/mol, respectively, φ is association factor (2.6 for water), M_L is the molecular weight of water.

To determine the liquid-solid mass transfer coefficient (k_{LS}) in solid foam, Mohammed et al proposed a modified correlation that considers gas and liquid superficial velocities, fluids physical properties and foam geometric features. A good agreement between the experimental result and predicated data was obtain, for the liquid-solid mass transfer coefficient calculation of polyurethane foam [5]. In this work, the liquid-solid mass transfer coefficient (k_{LS}) , in terms of Sherwood number, was also estimated by the correlation mentioned above.

$$\frac{\theta Sh}{Sc_{L}^{0.33}} = 0.13Re_{L}^{0.805}Re_{G}^{-0.89}\left(a_{p}d_{p}\frac{1-\varepsilon}{\varepsilon}\right)^{-1.34}$$

Where θ is the wetting efficiency of solid surface, α_p is the specific surface area of foam bed (per unit of bed volume), d_p is the characteristic length of the foam bed, ε is the porosity of foam. The wetting efficiency of solid surface is approximately equal to 100 %, because the liquid flow regime under experimental condition is similar to the typical low liquid holdup trickle flow with high gas-liquid interaction [6,7].

Table S1. Estimated Carberry (Ca) numbers of hydrogen and 4-CP during HDC in

	Pd/Ni foam			Pd/SiO ₂ /Ni foam			Pd-Ce/SiO ₂ /Ni foam		
T(°C)	Ca _{L-S}			Ca _{L-S}		Ca _{L-S}		^L -S	
	Ca _{G-L}	H_2	4-CP	Ca _{G-L}	H_2	4-CP	Ca _{G-L}	H_2	4-CP
20	1.3×10 ⁻³	2.6×10 ⁻⁵	6.9×10 ⁻⁵	1.5×10-4	1.2×10-4	3.1×10 ⁻⁴	9.2×10 ⁻⁵	1.6×10 ⁻⁴	4.3×10 ⁻⁴
40	3.9×10 ⁻³	1.1×10-4	6.4×10 ⁻⁵	2.7×10-4	3.2×10 ⁻⁴	1.8×10 ⁻⁴	1.6×10 ⁻⁴	4.0×10 ⁻⁴	2.3×10 ⁻⁴
60	1.9×10 ⁻³	1.5×10-4	8.3×10 ⁻⁵	1.2×10 ⁻⁴	3.9×10 ⁻⁴	2.2×10 ⁻⁴	7.2×10 ⁻⁵	5.0×10 ⁻⁴	2.8×10 ⁻⁴
	Reaction conditions: gas-liquid volume ratio (4:1), total gas-liquid flow rate (5								
	mL·min ⁻¹ at 20 and 40 °C, 10 mL·min ⁻¹ at 60 °C), 4-CP inlet concentration (10								
	mmol·L ⁻¹).								

flow foam reactor

Internal mass transfer limitation

The significance of internal mass transfer limitation was evaluated from the application of the Weisz-Prater criterion (Φ) [4]:

$$\Phi = L_p^2 \frac{r_{obs}}{D_e C^*}$$

Where (D_e) is the effective diffusivity estimated to be 0.1 *D* in the absence of the tortuosity factor [2, 4]. L_p is the thickness of the active layer, corresponding to 1/6 the Pd particle diameter for Pd/Ni foam and the thickness of the coating Pd layer for Pd/SiO₂/Ni foam and Pd-Ce/SiO₂/Ni foam [3].

Table S2. Estimated Weisz-Prater criterions (Φ) of hydrogen and 4-CP during HDC

•	~		C	
110	+1	OTT	±0.000	transtat
		()W	тоянн	теасто
111			rouin	reactor

T(°C)	Pd/Ni foam		Pd/SiO _{2'}	/Ni foam	Pd-Ce/SiO ₂ /Ni foam	
	H_2	4-CP	H_2	4-CP	H_2	4-CP
20	3.8×10-9	3.3×10 ⁻⁸	3.2×10 ⁻⁶	2.8×10 ⁻⁵	3.6×10 ⁻⁶	3.1×10 ⁻⁵
40	4.0×10 ⁻⁸	3.5×10 ⁻⁸	2.1×10 ⁻⁵	1.9×10 ⁻⁵	2.2×10 ⁻⁵	1.9×10 ⁻⁵
60	5.6×10 ⁻⁸	4.9×10 ⁻⁸	2.8×10 ⁻⁵	2.4×10 ⁻⁵	2.9×10 ⁻⁵	2.5×10 ⁻⁵

Reaction conditions: gas-liquid volume ratio (4:1), total gas-liquid flow rate (5 mL·min⁻¹ at 20 and 40 °C, 10 mL·min⁻¹ at 60 °C), 4-CP inlet concentration (10 mmol·L⁻¹).

Parameters of flow Pd-based Ni foam reactor under experimental conditions

Table S3. Parameters of flow Pd-based Ni foam reactor

	Pore density (ppi)	3	$d_p(m)$	$\alpha_p (\mathrm{m}^2 \cdot \mathrm{m}^{-3})$	ϵ_L	$L_{p}\left(\mathbf{m} ight)$
Pd/Ni foam	110	0.97	3.7×10 ⁻⁴	5.4×10 ⁵	0.34	1.8×10 ⁻⁸
Pd/SiO ₂ /Ni foam	110	0.97	3.7×10-4	1.0×10^{7}	0.43	4×10-6
Pd-Ce/SiO ₂ /Ni foam	110	0.97	3.7×10 ⁻⁴	1.8×10 ⁷	0.44	4×10 ⁻⁶

References

- [1] R.R. Zapico, P. Marín, F.V. Díez, S. Ordóñez, Liquid hold-up and gas-liquid mass transfer in analumina open-cell foam, Chem. Eng. Sci. 143 (2016) 297–304. http://dx.doi.org/10.1016/j.ces.2016.01.008.
- [2] E. Crezee, B.W. Hoffer, R.J. Berger, M. Makkee, F. Kapteijn, J.A. Moulijn, Three-phase hydrogenation of d-glucose over a carbon supported ruthenium catalyst-mass transfer and kinetics, Applied Catalysis A: General 251 (2003) 1-17. https://doi.org/10.1016/S0926-860X(03)00587-8.
- [3] Y. Zhao, J. Zhou, J. Zhang, D. Li, S. Wang, Selective hydrogenation of benzene to cyclohexene on a Ru/Al₂O₃/cordierite monolithic catalyst: Effect of mass transfer on the catalytic performance, Ind. Eng. Chem. Res. 47, (2008) 4641-4647. https://doi.org/10.1021/ie071574g.
- [4] E. Díaz, J.A. Casas, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.J. Rodríguez, Kinetics of 4-chlorophenol hydrodechlorination with alumina and activated carbon-supported Pd and Rh catalysts, Ind. Eng. Chem. Res. 48 (2009) 3351-3358. https://doi.org/10.1021/ie801462b.
- [5] I. Mohammed, T. Bauer, M. Schubert, R. Lange, Liquid-solid mass transfer in a tubular reactor with solid foam packings, Chem. Eng. Sci. 108 (2014) 223-232. http://dx.doi.org/10.1016/j.ces.2013.12.016.
- [6] R. Joubert, W. Nicol, Trickle flow liquid-solid mass transfer and wetting efficiency in small diameter columns, Can. J. Chem. Eng. 9999 (2012) 1-7. http://dx.doi.org/ 10.1002/cjce.21668.
- [7] C.P Stemmet, J. Van der Schaaf, B.F.M. Kuster, J.C. Schouten, Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer, Chem. Eng. Res. Des. 84 (2006) 1134-1141. http://dx.doi.org/10.1205/cherd05034.

Nomenclature

 Ca_{G-L} Carberry number for gas-liquid mass transport

- Ca_{L-S} Carberry number for liquid-solid mass transport
- Φ Weisz-Prater parameter
- *Sh* Sherwood number
- Sc Schmidt number
- *Re* Reynolds number
- D diffusion coefficient (m²·s⁻¹)
- *De* effective diffusion coefficient ($m^2 \cdot s^{-1}$)
- $k_L \alpha_{GL}$ gas-liquid mass transfer coefficient (s⁻¹)
- k_{LS} liquid to solid mass transfer coefficient (m·s⁻¹)
- C^* equilibrium concentration (mmol·L⁻¹)
- C_b bulk concentration (mmol·L⁻¹)
- r_{obs} observed reaction rate (mmol·L⁻¹·s⁻¹)
- μ viscosity (Pa·s)
- ρ density (kg·m⁻³)
- *u* superficial velocity $(m \cdot s^{-1})$
- ε_L liquid hold-up (m³_{liquid}·m⁻³ _{bed})
- α_p the specific surface area of foam bed (m²·m⁻³)
- d_p the characteristic length of the foam bed (m)
- φ association factor, 2.6 for water
- V_i volume of species i in water at its normal boiling temperature
- M molecular weight (g·mol⁻¹)
- T temperature (K)
- Θ wetting efficiency of solid foam surface
- ε porosity of foam.
- L_p thickness of the active layer (m)
- L liquid phase
- G gas phase

Fig. S2 Concentration-time curves of 4-CP at 20 °C (a), 40 °C (b) and 60 °C (c), and Arrhenius plots of 4-CP (d) during HDC in flow Pd-based Ni foam reactor. Experimental (symbols) and predicted (dash lines) values. Reaction conditions: gasliquid volume ratio (4:1), 4-CP inlet concentration (10 mmol·L⁻¹).

Entry	4-CP _{inlet} concentration (mmol·L ⁻¹)	Total fiow rate (mL·min ⁻¹)	Residence time (s)	Conversion (%)	4-CP _{outlet} concentration (ppm)
1	10	20	15	59.52%	475.85
2	10	15	20	72.29%	348.49
3	10	10	30	85.95%	162.93
4	10	5	60	99.33%	10.11
5	10	2.5	120	99.45%	9.93
6	20	5	60	91.15%	182.25
7	5	5	60	99.69%	2.06
8	1	5	60	99.57%	0.62
9	0.2	5	60	99.01%	0.36

Table S4. HDC of 4-CP in flow Pd-Ce/SiO₂/Ni foam reactor

Reaction conditions: reaction temperature (20 °C), gas-liquid volume ratio (4:1).