Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## Hexacoordinated Co(II) complex exhibiting strong magnetic anisotropy and field-induced slow magnetization relaxation: synthesis, magnetic characterization, and quantum-chemical modelling

Yulia P. Tupolova,<sup>†</sup> Vladimir E. Lebedev, <sup>†</sup> Denis V. Korchagin, <sup>\*,‡</sup> Valery V. Tkachev, Andrey N. Utenyshev,<sup>‡</sup>Roman B. Morgunov, <sup>‡</sup>Andrei V. Palii, <sup>‡</sup> Igor N. Shcherbakov, <sup>\*,†</sup>, Sergey M. Aldoshin<sup>‡</sup>

<sup>†</sup> Department of Chemistry, Southern Federal University, 7, Zorge Str., Rostov-on-Don, 344090, Russia.

<sup>‡</sup> Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of RAS, Chernogolovka, Moscow Region, 142432, Russia.

| Parameters                             | Values                                   |
|----------------------------------------|------------------------------------------|
| Empirical formula, moieties            | $C_{24}H_{20}CoN_8S_2$ , 2( $C_2H_6OS$ ) |
| Formula weight                         | 699.79                                   |
| Temperature (K)                        | 100.01(10)                               |
| λ, Å                                   | Μο <i>K</i> <sub>α</sub> (0.71073)       |
| Crystal system                         | Monoclinic                               |
| Space group                            | C 2/c                                    |
| <i>a</i> , Å                           | 14.6399(8)                               |
| b, Å                                   | 13.9674(5)                               |
| <i>c</i> , Å                           | 17.1940(16)                              |
| β°                                     | 114.285(5)                               |
| <i>V</i> , Å <sup>3</sup>              | 3204.7(4)                                |
| Ζ                                      | 4                                        |
| d <sub>calc</sub> (Mg/m <sup>3</sup> ) | 1.450                                    |
| $\mu$ , mm <sup>-1</sup>               | 0.836                                    |
| <i>F</i> (000)                         | 1452                                     |
| Crystal shape, size                    | Prism, 0.34 x 0.32 x 0.27 mm.            |
| θ range, °                             | 3.05-32.07                               |
| Index ranges                           | -21<=h<=19, -20<=k<=20, -25<=l<=24       |
| Reflections collected/unique           | 23560/5529                               |
| Reflections $I > 2\sigma(I)$           | 4802                                     |

Table S1. Crystallographic data and details of the crystallographic experiment and refinement procedure for **1** 

| Refinement procedure           | Full-matrix least squares on $F^2$ . |
|--------------------------------|--------------------------------------|
| Number of refined parameters   | 233                                  |
| GooF                           | 1.148                                |
| R indices $F^2 > 2\sigma(F^2)$ | $R_1 = 0.0468, wR_2 = 0.0947$        |
| R indices (all data)           | $R_1 = 0.0564, wR_2 = 0.0984$        |
| Min. and Max. Resd. Dens.      | -0.58, 0.54                          |
| [e/Ang <sup>3</sup> ]          |                                      |

Table S2. Selected bond lengths (Å), bond and torsion angles (degrees) of 1 (symmetry code a: 1-x, y, 1/2-z)

| Bond lengths, Å |            |               |                 |                |             |  |
|-----------------|------------|---------------|-----------------|----------------|-------------|--|
| Co-N1           | 2.1172(14) | N2-C3         | 1.373(2) C9-C10 |                | 1.377(2)    |  |
| Co-N3           | 2.2209(14) | N3-C3         | 1.324(2)        | C10-C11        | 1.409(2)    |  |
| Co-N4           | 2.0706(15) | C3-C4         | 1.420(2)        | N3-C11         | 1.380(2)    |  |
| N4-C12          | 1.153(2)   | C4-C5         | 1.355(2)        | C6-C11         | 1.414(2)    |  |
| S1-C12          | 1.6315(19) | C5-C6         | 1.420(2)        | C1-C2          | 1.489(2)    |  |
| C1-C1_a         | 1.478(3)   | C6-C7         | 1.412(2)        | S2-O1          | 1.380(5)    |  |
| N1-C1           | 1.292(2)   | C7-C8         | 1.373(3)        | S2-C13         | 1.776(3)    |  |
| N1-N2           | 1.3530(19) | C8-C9         | 1.405(3)        | S2-C14         | 1.764(4)    |  |
|                 |            | Bond angle    | es, deg         |                |             |  |
| N1-Co-N3        | 73.87(5)   | Co-N4-C12     | 169.79(14)      | N1-Co-N4       | 98.30(6)    |  |
| N1-C1-C1_a      | 113.22(15) | N1-Co-N1_a    | 72.30(5)        | N1-C1-C2       | 125.56(15)  |  |
| N1-Co-N3_a      | 145.53(5)  | C1_a-C1-C2    | 121.20(15)      | N1-Co-N4_a     | 91.08(6)    |  |
| N3-Co-N4        | 87.39(6)   | N3-C3-C4      | 124.29(16)      | N3-Co-N3_a     | 140.44(5)   |  |
| N2-C3-C4        | 117.46(15) | N3-Co-N4_a    | 88.69(6)        | N2-C3-N3       | 118.24(14)  |  |
| C3-C4-C5        | 118.08(16) | C4-C5-C6      | 120.45(16)      | N4-Co-N4_a     | 168.39(6)   |  |
| C7-C6-C11       | 119.34(16) | C5-C6-C11     | 117.37(15)      | C5-C6-C7       | 123.25(16)  |  |
| C6-C7-C8        | 120.38(17) | C7-C8-C9      | 120.32(18)      | C8-C9-C10      | 120.21(18)  |  |
| Co-N1-N2        | 116.77(10) | Co-N3-C3      | 113.24(11)      | Co-N3-C11      | 128.52(11)  |  |
| Co-N1-C1        | 120.59(11) | S1-C12-N4     | 179.62(16)      |                |             |  |
|                 |            | Torsion ang   | les, deg        |                |             |  |
| N3-Co-N1-N2     | -8.27(14)  | C2-C1-C1a-C2  | a 7.0(3)        | N3 a-Co-N3-C11 | 2.5(2)      |  |
| N3-Co-N1-C1     | 174.35(18) | N2-C3-C4-C5   | 176.2(2)        | N4_a-Co-N3-C3  | -81.73(14)  |  |
| N4-Co-N1-N2     | -93.09(14) | N3-C3-C4-C5   | -2.7(3)         | N4_a-Co-N3-C11 | 86.85(17)   |  |
| N4-Co-N1-C1     | 89.52(17)  | C3-C4-C5-C6   | 2.9(3)          | Co-N1-N2-C3    | 5.9(2)      |  |
| N1 a-Co-N1-N2   | 178.43(16) | C4-C5-C6-C7   | 178.6(2)        | C1-N1-N2-C3    | -176.8(2)   |  |
| N1 a-Co-N1-C1   | 1.05(16)   | C4-C5-C6-C11  | 0.7(3)          | Co-N1-C1-C2    | 175.44(18)  |  |
| N3 a-Co-N1-N2   | 167.02(13) | C5-C6-C7-C8   | -176.5(2)       | Co-N1-C1-C1 a  | -2.6(2)     |  |
| N3 a-Co-N1-C1   | -10.4(2)   | C11-C6-C7-C8  | 1.3(3)          | N2-N1-C1-C2    | -1.8(3)     |  |
| N4 a-Co-N1-N2   | 80.06(14)  | C5-C6-C11-N3  | -5.1(3)         | N2-N1-C1-C1 a  | -179.86(18) |  |
| N4 a-Co-N1-C1   | -97.33(17) | C5-C6-C11-C10 | ) 173.79(19)    | N1-N2-C3-N3    | 3.4(3)      |  |
| N1-Co-N3-C3     | 9.78(14)   | C7-C6-C11-N3  | 176.97(19)      | N1-N2-C3-C4    | -175.52(18) |  |

| N1-Co-N3-C11    | 178.35(18)  | C7-C6-C11-C10   | -4.1(3)     | Co-N3-C3-N2   | -10.4(2)    |
|-----------------|-------------|-----------------|-------------|---------------|-------------|
| N4-Co-N3-C3     | 109.20(14)  | C6-C7-C8-C9     | 2.0(3)      | Co-N3-C3-C4   | 168.49(16)  |
| N4-Co-N3-C11    | -82.23(17)  | C7-C8-C9-C10    | -2.4(4)     | C11-N3-C3-N2  | 179.70(18)  |
| N1_a-Co-N3-C3   | 21.1(2)     | C8-C9-C10-C11   | -0.5(3)     | C11-N3-C3-C4  | -1.5(3)     |
| N1_a-Co-N3-C11  | -170.33(15) | C9-C10-C11-N3   | -177.29(19) | Co-N3-C11-C6  | -162.77(15) |
| N3_a-Co-N3-C3   | -166.03(13) | C9-C10-C11-C6   | 3.8(3)      | Co-N3-C11-C10 | 18.4(3)     |
| C3-N3-C11-C10   | -173.48(18) | N1-C1-C1_a-N1_a | 3.3(3)      | C3-N3-C11-C6  | 5.4(3)      |
| N1-C1-C1_a-C2_a | -174.9(2)   | C2-C1-C1_a-N1_a | -174.9(2)   |               |             |

**Table S3**. Nuclei coordinates of **1** used for CASSCF/NEVPT2 calculations. Non-hydrogen atoms coordinates are taken from single crystal diffraction experiment, hydrogen atoms position are optimized at BP86/ def2-TZVP level of theory.

| 27 | 0.000000000  | 0.000000000  | 0.598280000  |
|----|--------------|--------------|--------------|
| 16 | 1.341144000  | 4.628719000  | 0.190851000  |
| 7  | 1.197206000  | -0.357581000 | 2.307750000  |
| 7  | 2.466267000  | -0.770990000 | 2.088461000  |
| 1  | 3.006701000  | -1.242448000 | 2.810990000  |
| 7  | 2.060646000  | -0.355510000 | -0.153585000 |
| 7  | 0.375816000  | 2.030852000  | 0.387931000  |
| 6  | 0.702355000  | -0.230230000 | 3.494560000  |
| 6  | 1.412666000  | -0.544531000 | 4.766571000  |
| 1  | 1.027619000  | 0.043951000  | 5.605838000  |
| 1  | 2.488089000  | -0.315391000 | 4.694094000  |
| 1  | 1.320700000  | -1.611017000 | 5.037867000  |
| 6  | 2.886688000  | -0.795925000 | 0.780135000  |
| 6  | 4.182427000  | -1.318888000 | 0.521459000  |
| 1  | 4.814403000  | -1.645489000 | 1.348472000  |
| 6  | 4.579716000  | -1.423350000 | -0.771643000 |
| 1  | 5.554284000  | -1.849180000 | -1.019359000 |
| 6  | 3.743980000  | -0.962478000 | -1.821852000 |
| 6  | 4.109300000  | -1.014956000 | -3.184092000 |
| 1  | 5.060655000  | -1.477207000 | -3.455627000 |
| 6  | 3.287699000  | -0.487897000 | -4.146167000 |
| 1  | 3.577651000  | -0.534876000 | -5.197209000 |
| 6  | 2.087504000  | 0.148442000  | -3.782455000 |
| 1  | 1.462646000  | 0.610622000  | -4.547601000 |
| 6  | 1.705439000  | 0.205048000  | -2.460301000 |
| 1  | 0.801937000  | 0.730177000  | -2.155675000 |
| 6  | 2.505699000  | -0.383640000 | -1.460236000 |
| 6  | 0.779330000  | 3.102195000  | 0.305523000  |
| 7  | -1.197206000 | 0.357581000  | 2.307750000  |
| 7  | -2.466267000 | 0.770990000  | 2.088461000  |
| 1  | -3.006701000 | 1.242447000  | 2.810990000  |
| 7  | -2.060646000 | 0.355510000  | -0.153585000 |
| 6  | -0.702355000 | 0.230230000  | 3.494560000  |
| 6  | -1.412666000 | 0.544531000  | 4.766571000  |
| 1  | -1.027617000 | -0.043948000 | 5.605838000  |
| 1  | -2.488089000 | 0.315388000  | 4.694095000  |
| 1  | -1.320703000 | 1.611018000  | 5.037865000  |

| 6  | -2.886688000 | 0.795925000  | 0.780135000  |
|----|--------------|--------------|--------------|
| 6  | -4.182427000 | 1.318888000  | 0.521459000  |
| 1  | -4.814403000 | 1.645489000  | 1.348472000  |
| 6  | -4.579716000 | 1.423350000  | -0.771644000 |
| 1  | -5.554284000 | 1.849180000  | -1.019359000 |
| 6  | -3.743980000 | 0.962478000  | -1.821852000 |
| 6  | -4.109300000 | 1.014957000  | -3.184093000 |
| 1  | -5.060655000 | 1.477207000  | -3.455627000 |
| 6  | -3.287699000 | 0.487897000  | -4.146168000 |
| 1  | -3.577651000 | 0.534877000  | -5.197209000 |
| 6  | -2.087504000 | -0.148442000 | -3.782455000 |
| 1  | -1.462647000 | -0.610622000 | -4.547601000 |
| 6  | -1.705439000 | -0.205048000 | -2.460301000 |
| 1  | -0.801937000 | -0.730177000 | -2.155675000 |
| 6  | -2.505699000 | 0.383641000  | -1.460236000 |
| 16 | -1.341144000 | -4.628719000 | 0.190850000  |
| 7  | -0.375816000 | -2.030852000 | 0.387930000  |
| 6  | -0.779330000 | -3.102195000 | 0.305522000  |

**Table S4**. Best fit parameters of the generated Debye model for the Cole-Cole plot of complex 1 at  $H_{DC}$  =1000 Oe

| <i>T</i> , K | $\chi_{\rm S}$ , cm <sup>3</sup> mol <sup>-1</sup> | $\chi_{\rm T}$ , cm <sup>3</sup> mol <sup>-1</sup> | τ, s     | α     | $R_1^{a}$ |
|--------------|----------------------------------------------------|----------------------------------------------------|----------|-------|-----------|
| 1.8          | 0.152                                              | 1.285                                              | 4.14E-03 | 0.130 | 3.2E-03   |
| 2.0          | 0.138                                              | 1.179                                              | 2.85E-03 | 0.128 | 2.0E-03   |
| 2.2          | 0.124                                              | 1.084                                              | 1.93E-03 | 0.129 | 1.6E-03   |
| 2.4          | 0.113                                              | 1.020                                              | 1.25E-03 | 0.124 | 1.6E-03   |
| 2.5          | 0.105                                              | 0.949                                              | 1.07E-03 | 0.125 | 8.8E-04   |
| 2.7          | 0.093                                              | 0.880                                              | 7.81E-04 | 0.125 | 6.6E-04   |
| 2.8          | 0.091                                              | 0.844                                              | 6.66E-04 | 0.118 | 7.2E-04   |
| 3.0          | 0.083                                              | 0.794                                              | 5.25E-04 | 0.123 | 4.7E-04   |
| 3.5          | 0.069                                              | 0.682                                              | 3.12E-04 | 0.112 | 3.1E-04   |
| 4.0          | 0.060                                              | 0.611                                              | 2.05E-04 | 0.105 | 1.5E-04   |
| 5.0          | 0.032                                              | 0.484                                              | 1.00E-04 | 0.105 | 6.5E-04   |

<sup>*a*</sup> The mean residual sum of squares



Fig.S1.  $ln(\tau)$  versus ln(T) dependence: open circles – experiment, red solid line – linear fit.