Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

A Phosphine-based fluorescent probe for fluorescent imaging of hypochlorous acid in living cells and zebrafish

Sheng Bi,^{1,†} Taorui Yang,^{1,†} Ke An,¹ Shidong Wang,^{1,2} and Yifeng Han^{1,*}

¹ Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

² Wayen Biotechnologies (Shanghai), Inc, Shanghai, China.

*Corresponding author, E-mail: zstuchem@gmail.com (Y. Han); Tel: +86-751-86843550;

Contents

Experimental section S3
Additional spectroscopic data S5
Comparison of fluorescent probes for HOCl detection ······S11
The characterization data of BBP ·····S16
References······S18

Experimental section

Reagents, materials, and apparatus:

All the solvents used in the experiment were of analytic grade. The reaction progress was monitored by thin-layer chromatography (TLC) on silica gel plates (GF_{254}) visualized by UV light. 200-300 mesh silica gel was used for column chromatography. NMR experiments were carried out on a Bruker AV-400 NMR spectrometer with chemical shifts reported in ppm (in CDCl₃, DMSO- d_6 , or TMS as an internal standard). Mass spectra were measured on an Agilent 1290 LC-MS spectrometer. All pH measurements were made with a Sartorius basic pH-Meter PB-10. Fluorescence spectra were determined on a PerkinElmer LS55 Fluorescence spectrophotometer. Absorption spectra were collected on a Shimadzu UV 2501(PC)S UV-Visible spectrophotometer. The excitation and emission widths for **BBP** were all 1.5.

Preparation of various ROS and RNS species:^[1]

HOCI: Take an appropriate amount of commercially available hypochlorous acid solution and prepare about 10^{-2} M hypochlorous acid stock solution with deionized water. Dilute the hypochlorous acid solution, and calibrate its concentration ($\varepsilon = 350 \text{ M}^{-1}\text{cm}^{-1}$) through the ultraviolet spectrum absorption value at 292 nm.

ONOO-: To a vigorously stirred solution of NaNO₂ (0.6 M, 10 mL) and H₂O₂ (0.7 M, 10 mL) in deionized H₂O at 0 °C was added HCl (0.6 M, 10 mL), immediately followed by the rapid addition of NaOH (1.5 M, 20 mL). Excess hydrogen peroxide was removed by passing the solution through a short column of MnO₂. The concentration of ONOO⁻ was determined by UV analysis with the extinction coefficient at 302 nm ($\varepsilon = 1670 \text{ M}^{-1} \text{ cm}^{-1}$). The solution were stored at -20 °C for use.

NO: A solution of the H₂SO₄ (3.6 M) was added dropwise into a stirred solution of NaNO₂ (7.3 M). The emitted gas was allowed to pass through a solution of NaOH (2 M) first and then deionized H₂O to make a saturated NO solution of 2.0 mM.

 $^{1}O_{2}$: NaMoO₄ (10 mM) and H₂O₂ (10 mM) was prepared in PBS (10 mM, pH 7.4). Equal aliquots of these solutions were then mixed to yield $^{1}O_{2}$ of 5 mM.

H₂O₂: Take an appropriate amount of commercially available H₂O₂ solution and prepare about 10^{-2} M H₂O₂ stock solution with deionized water. And its concentration is calibrated by the ultraviolet absorption value at 240 nm ($\varepsilon = 43.6$ M⁻¹cm⁻¹).

·OH: ·OH was generated by Fenton reaction. To a solution of H_2O_2 (1.0 mM, 1.0 mL) in PBS (10 mM, pH 7.4) was added FeSO₄ solution (1.0 mM, 100 µL) at ambient temperature (stock solution 0.1 mM).

ROO: ROO was generated from 2, 2'-azobis(2-amidinopropane)dihydrochloride, which was dissolved in PBS (10 mM, pH 7.4) 1 h before use to make a stock solution of 10 mM.

Additional spectroscopic data

Fig. S1 The UV-vis spectrum of **BBP** (10.0 μ M) with and without of HOCl (2.0 equiv.) in PBS buffer solution (10 mM, pH 7.2, containing 10% EtOH). Bottom inset: Cuvette images of the probe **BBP** before and after adding HOCl.

Fig. S2 The fluorescent intensity of BBP (10.0 μ M) at 583 nm ((I₅₈₃) as a function of HOCl concentration (0-10.0 μ M) in PBS buffer solution (10 mM, pH 7.2, containing 10% EtOH, $\lambda_{ex} = 552$ nm).

The detection limit (DL) of HOCl using BBP was determined from the following equation: ^[2]

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Fig. S3 The fluorescent spectra of BBP (10 μ M) before and after the addition of various analytes (100 μ M each, including ¹O₂, H₂O₂, NO, ·OH, ROO·, and ONOO⁻), and HOCl (10 μ M), (in PBS buffer solution, 10 mM, pH 7.2, containing 10% EtOH, $\lambda_{ex} = 552$ nm).

Fig. S4. The fluorescence spectra of the probe BBP (10 μ M) alone at different pH values (λ_{ex} = 552

nm).

Fig. S5. The fluorescence spectra of the probe BBP (10 $\mu M)$ in the present of HOCl (10 $\mu M)$ at

different pH values ($\lambda_{ex} = 552 \text{ nm}$).

Fig. S6. The HR ESI-MS spectrum of BBP and HOCl mixture.

Fig. S7. Cell viability of the probe in a standard MTT assay in living RAW 264.7 cells for 24 h. The experiment was repeated three times.

S11

No.	Structures	Abs/Em	Stocks Shift	LOD	Cell Imaging	Mouse/Zebra Fish Imaging	Refs
1		387/590	203	2.4 nM	\checkmark	×	[3]
2		694/712	18	89.7 nM	1	V	[4]
3		430/620	190	30.8 nM	\checkmark	×	[5]
4		567/623	56	5.8 μΜ		\checkmark	[6]
5		350/492	142	250 nM	\checkmark	×	[7]
6	HO HO HO HO HO HO HO HO HO HO HO HO HO H	513/556	43	785 nM	V	×	[8]
7	O HN HN S S S S S S S S S S S S S S S S S	468/553	85	17 nM	\checkmark	×	[9]
8		692/738	46	90 nM	V	×	[10]

 Table S1. Comparison of fluorescent probes for HOCl detection.

9	NO ₂ N S C S	520/620	100	-	×	×	[11]
10		622/655	33	30 nM	\checkmark	~	[12]
11		438/503	65	25.8 nM	\checkmark	×	[13]
12		374/595	221	118 nM	\checkmark	\checkmark	[14]
13	HN SOLUTION NH2	596/638	42	94.7 nM	\checkmark	×	[15]
14	HO S S S S S S	435/456	21	0.14 μM		×	[16]
15	→ Co-B	328/394	66	-	\checkmark	×	[17]
16		364/530	166	32 μΜ	\checkmark	×	[18]
17		700/-	-	0.36 μM	1	×	[19]

18		510/650	140	3.3 nM	V	×	[20]
19		450/640	190	12 nM	\checkmark	\checkmark	[21]
20		402/680	278	24.5 nM	V	V	[22]
21		445/530	85	10.3 nM	V	×	[23]
22	Se N (CH ₂) ₁₀ COOH	710/790	80	31.5 nM	V	V	[24]
23	$ \overset{s_e}{\underset{F'}{\overset{N_*B',N_*B',N_*}{\overset{N_*}{\overset{N_*}{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}{\overset{N_*}}{\overset{N_*}{\overset{N_*}{\overset{N_*}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	452/484	32	0.63 μM	\checkmark	×	[25]
24	HOTOLON	5741/-	-	55 nM	\checkmark	\checkmark	[26]
25		378/530	152	32 nM	V	\checkmark	[27]
26	AcHN, OH OH OH OH OH OH OH	664/700	36	15 nM		1	[28]

27		653/669	16	0.23 μM	\checkmark	×	[29]
28		425/653	228	15.3 nM	\checkmark	×	[30]
29		504/642	142	16.1 nM	\checkmark	V	[31]
30	P F' F	575/583	8	15.3 nM	1	V	This work

The characterization data of BBP

¹H NMR of **3 (BBP)**

³¹P NMR of **3 (BBP)**

 150
 130
 110
 90
 70
 50
 30
 10
 -10
 -30
 -50
 -70
 -90
 -110
 -130
 -150
 -170
 -190
 -210
 -230
 -250

HR-MS of **3 (BBP)**

References

- [1] T. Peng, N. K. Wong, X. Chen, Y. K. Chan, D. H. Ho, Z. Sun, J. J. Hu, J. Shen, H. El-Nezami,
 D. Yang, J. Am. Chem. Soc., 2014, 136, 11728.
- [2] (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D.
 Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510.
- [3] S. Mu, L. Jiang, H. Gao, J. Zhang, H. Sun, X. Shi, X. Liu, H. Zhang, *Anal. Chim. Acta*, 2022, 1191, 339287.
- [4] H. Fang, Y. Chen, S. Geng, S. Yao, Z. Guo, W. He, Anal. Chem., 2022, 94, 17904.
- [5] M. Wang, X. Han, X. Yang, J. Liu, X. Song, W. Zhu, Y. Ye, Analyst, 2021, 146, 6490.
- [6] Q. Pang, T. Li, C. Yin, K. Ma, F. Huo, Analyst, 2021, 146, 3361.
- [7] D. Pan, Y. Don, Y. Lu, G. Xiao, H. Chi, Z. Hu, Anal. Chim. Acta, 2022, 1235, 340559.
- [8] W. Zhang, W. Song, W. Lin, J. Mater. Chem. B, 2021, 9, 7381.
- [9] K. Wang, Y. Liu, C. Liu, H. Zhu, X. Li, M. Yu, L. Liu, G. Sang, W. Sheng, B. Zhu, Sci. Total Environ., 2022, 839, 156164.
- [10] W.J. Shi, L.X. Feng, X. Wang, Y. Huang, Y.F. Wei, Y.Y. Huang, H.J. Ma, W. Wang, M. Xiang, L. Gao, *Talanta*, 2021, 233, 122581.
- [11] M. Swierczynska, D. Slowinski, R. Michalski, J. Romanski, R. Podsiadly, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 289, 122193.
- [12] G.J. Mao, Y.Y. Wang, W.P. Dong, H.M. Meng, Q.Q. Wang, X.F. Luo, Y. Li, G. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 249, 119326.
- [13] J. Chen, Y. Lu, Y. Wu, Z. Chen, X. Liu, C. Zhang, J. Sheng, L. Li, W. Chen, X. Song, ACS Chem. Neurosci., 2021, 12, 4058.

- [14] Z. Zhan, L. Chai, Q. Lei, X. Zhou, Y. Wang, H. Deng, Y. Lv, W. Li, *Anal. Chim. Acta*, 2021, 1187, 339159.
- [15] A. Zheng, H. Liu, C. Peng, X. Gao, K. Xu, B. Tang, Talanta, 2021, 226, 122152.
- [16] B. Gu, M. Liu, J. Long, X. Ye, Z. Xu, Y. Shen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 278, 121290.
- [17] A. Grzelakowska, M. Zielonka, K. Debowska, J. Modrzejewska, M. Szala, A. Sikora, J. Zielonka, R. Podsiadly, *Free Radic. Biol. Med.*, 2021, 169, 24.
- [18] C. Xu, Y. Zhou, Z. Li, Y. Zhou, X. Liu, X. Peng, J. Hazard. Mater., 2021, 418, 126243.
- [19] W.J. Shi, Q.H. Wan, F. Yang, X. Wang, Y.F. Wei, X.R. Lin, J.Y. Zhang, R.H. Deng, J.Y. Chen,
 L. Zheng, F. Liu, L. Gao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 279, 121490.
- [20] S. Cheng, A. Li, X. Pan, H. Wang, C. Zhang, J. Li, X. Qi, Anal. Bioanal. Chem., 2021, 413, 4441.
- [21] F.F. Guo, W.N. Wu, X.L. Zhao, Y. Wang, Y.C. Fan, C.X. Zhang, Z.H. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 264, 120270.
- [22] W. Qu, B. Yang, T. Guo, R. Tian, S. Qiu, X. Chen, Z. Geng, Z. Wang, Analyst, 2022, 148, 38.
- [23] M. He, H. Sun, J. Wei, R. Zhang, X. Han, Z. Ni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119138.
- [24] S. Zhang, L. Ning, Z. Song, X. Zhao, F. Guan, X.F. Yang, J. Zhang, Anal. Chem., 2022, 94, 5805.
- [25] G.S. Malankar, A. Sakunthala, A. Navalkar, S.K. Maji, S. Raju, S.T. Manjare, Anal. Chim. Acta, 2021, 1150, 338205.
- [26] Y. Gan, G. Yin, X. Zhang, L. Zhou, Y. Zhang, H. Li, P. Yin, Talanta, 2021, 225, 122030.

- [27] W. Cheng, X. Xue, L. Gan, P. Jin, B. Zhang, M. Guo, J. Si, H. Du, H. Chen, J. Fang, Anal. Chim. Acta, 2021, 1156, 338362.
- [28] X. Jia, C. Wei, Z. Li, L. Liu, M. Wang, P. Zhang, X. Li, Chem. Asian J., 2021, 16, 1967.
- [29] F. Liang, J. Jiang, X. Yang, G. Zhang, J. Zhou, J. Han, Y. Geng, Z. Wang, Chem. Commun., 2023, 59, 1357.
- [30] L. Yan, H. Yang, J. Li, C. Zhou, L. Li, X. Wu, C. Lei, Anal. Chim. Acta, 2022, 1206, 339750.
- [31] K.H. Kim, S.J. Kim, S. Singha, Y.J. Yang, S.K. Park, K.H. Ahn, ACS Sens., 2021, 6, 3253.