Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information for

Rough Ni@MoN coral for the hydrogen evolution reaction in acidic and alkaline media

Yu Zhang,^a Baiqing Zhang,^a Xiangcun Liu,^a Zhuoxun Yin,^{*,a,b} Xinzhi Ma,^{*,c} Yang Zhou,^{*,d} Wei Chen,^a Jinlong Li^{a,b} and Lingling Xu^c

a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006,

China. E-mail: <u>yzx@qqhru.edu.cn</u>;

b Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar

University, Qiqihar 161006, China;

c Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China. E-mail: maxz@hrbnu.edu.cn;

d College of Science, Qiqihar University, Qiqihar 161006, China. E-mail: 373133430@qq.com;

Corresponding author.
E-mail addresses: yzx@qqhru.edu.cn

Fig. S1. XRD patterns of (a) NiMo nanorod, (b) Ni@MoN -650/700/750, (c) Ni-700 and Mo-700.

Fig. S2. SEM images of (a) NiMoO₄ nanorod, (b) Ni -700, (c) Mo-700.

Fig. S3. Raman of Ni@MoN-650/700/750.

Fig. S4. XPS spectra of the Ni@MoN-650 catalysts: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, (e) Ni 2p and (f) Mo 3d.

Fig. S5. XPS spectra of the Ni@MoN-750 catalysts: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, (e) Ni 2p and (f) Mo 3d.

Fig. S6. XPS spectra of the Ni-700 catalysts: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s and (e) Ni 2p.

Fig. S7. XPS spectra of the Mo-700 catalysts: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s and (e) Mo 3d.

Fig. S8. XPS of Ni@MoN-700 after argon plasma etching , Ni 2p.

Fig. S9. (a) CV curves of Ni@MoN-650 electrode, (b) CV curves of Ni@MoN-700 electrode, (c) CV curves of Ni@MoN-750 electrode, (d) CV curves of Ni-700 electrode, (e) CV curves of Mo-700 electrode, in 1 M KOH.

Fig. S10. (a)The HER-TOFs of the Ni@MoN-650/700/750 in 1 M KOH solution (b)The HER-TOFs of the Ni@MoN-650/700/750 in 0.5 M H_2SO_4 solution.

Fig. S11. (a) CV curves of Ni@MoN-650 electrode, (b) CV curves of Ni@MoN-700 electrode, (c) CV curves of Ni@MoN-750 electrode, (c) CV curves of Ni-700 electrode, (c) CV curves of Mo-700 electrode, in 0.5 M H₂SO₄.

Fig. S12. Contact angles of (a) Ni@MoN-650, (b) Ni@MoN-700 and (c) Ni@MoN-750.

Fig. S13. XPS spectra of the Ni@MoN-700 catalysts after long-term electrolysis in 1M KOH: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, (e) Ni 2p and (f) Mo 3d.

Fig. S14. XPS spectra of the Ni@MoN-700 catalysts after long-term electrolysis in 0.5 $M H_2SO_4$: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, (e) Ni 2p and (f) Mo 3d.

Catalyst	$S_{O-V}/S_{total other peak}$
Ni@MoN-650	0.43
Ni@MoN-700	0.54
Ni@MoN-750	0.35
Ni -700	0.43
Mo-700	0.37
KOH-after	0.41
H_2SO_4 -after	0.16

Table S1. The concentration of oxygen vacancies for different samples as calculatedform the O 1s XPS spectra.

Table S2.Comparison of the Rct values of the prepared materials .

Sample	RCT (Ohm)-KOH	RCT (Ohm)-H ₂ SO ₄
Ni@MoN-650	1.64	1.62
Ni@MoN-700	1.43	1.40
Ni@MoN-750	1.58	1.56
Ni-700	1.71	1.65
Mo-700	1.74	1.68

Table S3. Comparison of the catalytic activities of HER on Ni@MoN-700 with recently reported catalysts in the 1.0 mol·L⁻¹ KOH medium

Catalyst	η/mV vs. RHE	Ref.
Ni@MoN-700	30	This work
Ni/NiO-cp	124	[2]
W-MoP	71	[7]
Mo-N/Mo-C	135	[8]
Mo-N/C@MoS ₂	117	[9]
MoS ₂ /MoN	132	[10]
NiSA-MoS ₂	98	[17]
Ni ₃ N	74	[24]
NiO/Ni-CNT	80	[25]
NiCoDPA	112	[41]

Note: η is the overpotential measured at 10 mA $\cdot cm^{-2}$

Table S4. Comparison of the catalytic activities of HER on Ni@MoN-700 with recentlyreported catalysts in the 0.5 mol·L⁻¹ H_2SO_4 medium

Catalyst	η/mV vs. RHE	Ref.
Ni@MoN-700	76	This work
Co-N-V ₃ S ₄	268	[1]
MoS ₂ /MoN	117	[10]
VN/Mo ₂ C	140	[15]
NiSA-MoS ₂	110	[17]
PCN@MoS ₂ @C	130	[19]
Cu electrode	182	[39]
CoP ₃ /CoMoP	125	[40]
CoMoOF/GF	94	[42]

Note: η is the overpotential measured at 10 mA·cm^-2.