Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Cu, Zn-coordinated ZIF-derived bimetal N-doped carbon framework for aerobic alcohol

oxidation

Wenjie Du, Xiaohui Sun, Kezhi Tang, Limei Wang, Zhuyin Sui, Yulin Li*, Xiufeng Xu*

School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong,

China

*Corresponding author.

E-mail address: liyulin@ytu.edu.cn (Y. Li), xxf@ytu.edu.cn (X. Xu).

Fig. S1 (a) N_2 sorption isotherms, (b) the pore size distribution and (c) SEM image of the Cu-ZIF

Fig. S2 XRD pattern of the Cu-ZIF

Fig. S3 XPS spectra of Zn 2p at different reaction times

Fig. S4 XPS spectra of N1s at different reaction times

Sample	N%			
	Pyridinic N	Pyrrolic N	Graphitic N	
1 h	58.1	20.2	21.7	
3 h	54.5	24.2	21.3	
5 h	54.2	20.8	25.0	

Table S1 Surface atomic ratio of the N1s at different reaction times over the Zn-N-C-800 catalyst

 Table S2 Catalytic performance at respective temperatures and solvent for selected representative

 benzyl alcohol oxidation systems

Catalyst	Solvent	Temperature / °C	Time / h	Con. / %	Sel. / %	Refs.
Ag@Au/ZIF-8	THF	130	1	75	53	[1]
Pd/MagSBA		85	9	85	83	[2]
MnO ₂ @MF	Hexane	70	4	40	100	[3]
PtBi/CNT	Water	75	3	55	90	[4]
Co ₃ O ₄ /MnO ₂	Toluene	100	6	81	90	[5]
Au-Pd/TiO ₂		90	6	95	74	[6]
CuNi/C	THF	100	4	64	54	[7]
Mn_6Ni_4	Toluene	100	1	89	99	[8]
Cu-Zn-N-C-800	Toluene	50	3	95	84	This
						work

References

- 1 L.L. Liu, X.J. Zhou, Y.M. Yan, J. Zhou, W.P. Zhang, X.S. Tai, Polymers, 10 (2018) 1-16.
- 2 Y.Y. Li, J.L. Huang, X.J. Hu, F.L.Y. Lam, W.J. Wang, R. Luque, J. Mol. Catal. A-Chem., 425 (2016) 61-67.
- 3 G. Elmaci, D. Ozer, B. Zumreoglu-Karan, Catal. Commun., 89 (2017) 56-59.
- 4 C.M. Zhou, Z. Guo, Y.H. Dai, X.L. Jia, H. Yu, Y.H. Yang, Appl. Catal. B-Environ., 181 (2016) 118-126.
- 5 V.G. Reddy, D. Jampaiah, A. Chalkidis, Y.M. Sabri, E.L.H. Mayes, S.K. Bhargava, Catal. Commun., 130 (2019) 1-5.
- 6 Y.L. Hong, X.L. Jing, J.L. Huang, D.H. Sun, T. Odoom-Wubah, F. Yang, M.M. Du, Q.B. Li, ACS Sus. Chem. Eng., 2 (2014) 1752-1759.
- 7 L.L. Liu, X.J. Zhou, L. Liu, S. Jiang, Y.J. Li, L.X. Guo, S.J. Yan, X.S. Tai, Catalysts, 9 (2019) 1-18.

8 Q.H. Tang, C.M. Wu, R. Qiao, Y.T. Chen, Y.H. Yang, Appl. Catal. A-Gen., 403 (2011) 136-141.

Fig. S5 Effect of benzyl alcohol concentration on catalytic performance.

Catalyst	Amount of catalyst / g	Con. / %	Sel. / %	TOF / h ^{-1 b}
Zn-N-C-700	0.02	5.7	76	2.01
Zn-N-C-800	0.02	8.6	62	6.54

Table S3 Catalytic activity of prepared catalyst.^a

Zn-N-C-900	0.015	2.6	99	6.01
Cu-Zn-N-C-800	0.012	5.5	99	7.08

^a Reaction conditions: 0.4 mmol benzyl alcohol, 10 mL toluene, O₂ flow rate 30 mL/min, 70 °C, 1h. ^b Calculated based on the total amount of metal.

Fig. S6 XPS spectra of Zn-N-C-800 catalyst for different reaction cycles

Fusice Standard atomic fatto of the catalyst as estimated by Thest								
Sample -		С%		N%			O%	
	C=C	C-O/C-N	Pyridinic N	Pyrrolic N	Graphitic N	C=O	C-0	
Run 1	60.4	39.6	54.2	20.8	25.0	42.5	57.5	
Run 2	59.8	40.2	54.7	20.7	24.6	42.4	57.6	
Run 3	60.8	39.2	54.0	20.8	25.2	42.9	57.1	

Table S4 Surface atomic ratio of the catalyst as estimated by XPS.