Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## SUPPORTING INFORMATION for

## Theoretical Insights into the Room Temperature Phosphorescence Properties in Star-Shaped Carbazole Based Molecules

Kothoori Naga Pranavasree, Pandiyan Sivasakthi, and Pralok K. Samanta\*

Department of Chemistry, School of Science, Gandhi Institute of Technology and

Management (GITAM), Hyderabad-502329, India

\*Corresponding author: psamanta@gitam.edu, pralok.samanta@gmail.com

**Table S1:** Calculation of low energy optical absorption energy with different DFT functionals. All values in eV.

| Molecules | Expt. | B3LYP | PBE0 | BHandHLYP | WB9XD | <i>W</i> *B97XD | m062x |
|-----------|-------|-------|------|-----------|-------|-----------------|-------|
| CzO       | 3.71  | 3.43  | 3.56 | 4.26      | 4.23  | 3.71            | 4.08  |
| CzS       | 3.70  | 3.28  | 3.41 | 4.16      | 4.12  | 3.57            | 3.96  |
| CzSe      | 3.70  | 3.32  | 3.45 | 4.19      | 4.11  | 3.60            | 3.98  |
| MAD       | 0     | 0.36  | 0.23 | 0.50      | 0.45  | 0.07            | 0.30  |

**Table S2:** Natures of Representative Ground State  $\lambda_{abs}$  (S<sub>0</sub> $\rightarrow$ S<sub>1</sub>) with Different DFT Functionals (in eV).

| Malagular | Gaussian        | ORCA |       |       |           |  |
|-----------|-----------------|------|-------|-------|-----------|--|
| Molecules | <i>W</i> *B97XD | PBE0 | B3LYP | M062X | BHandHLYP |  |
| CzO       | 3.71            | 3.59 | 3.45  | 4.10  | 4.30      |  |
| CzS       | 3.58            | 3.45 | 3.32  | 3.99  | 4.21      |  |
| CzSe      | 3.61            | 3.49 | 3.35  | 4.01  | 4.24      |  |
| MAD       | 0.00            | 0.12 | 0.26  | 0.40  | 0.62      |  |

## **Reorganization Energy:**

Total reorganization energy  $(\lambda)$ 

- = intramolecular reorganization energy ( $\lambda_{intra}$ ) + contribution from surroundings ( $\lambda_{surr}$ )
- = non-classical high-frequency intramolecular vibrational modes + low-frequency intramolecular vibrational modes + contribution from surroundings ( $\lambda_{surr}$ )
- = non-classical high-frequency intramolecular vibrational modes + Marcus reorganization energy ( $\lambda_M$ )
- $= S_{eff} \!\!\times \! \hbar \omega_{eff} \! + \lambda_M$

**Table S3a\***: Intramolecular Reorganization Energy and Calculation of  $k_{ISC}$  (in s<sup>-1</sup>) with different values of Huang-Rhys factor (S).

| Molecule | $\lambda_{intra}$ | S.→T                  | $k_{ISC}$ @S=0             | $k_{ISC}$ @S=1             | $k_{ISC}$ @S=2             |
|----------|-------------------|-----------------------|----------------------------|----------------------------|----------------------------|
| Wolceule | (eV)              | $S_1 \rightarrow I_n$ | $\lambda_M=0.3 \text{ eV}$ | $\lambda_M=0.2 \text{ eV}$ | $\lambda_M=0.1 \text{ eV}$ |
| CzO      | 0.12              | $T_1$                 | 1.08×10 <sup>8</sup>       | 1.05×10 <sup>8</sup>       | 9.33×10 <sup>7</sup>       |
|          |                   | T <sub>3</sub>        | 7.75×10 <sup>5</sup>       | 9.22×10 <sup>5</sup>       | 1.44×10 <sup>6</sup>       |
| CzS      | 0.21              | $T_1$                 | 1.76×10 <sup>8</sup>       | 9.92×10 <sup>7</sup>       | 1.23×10 <sup>8</sup>       |
|          |                   | T <sub>2</sub>        | 2.90×10 <sup>9</sup>       | 3.30×10 <sup>9</sup>       | 5.14×10 <sup>9</sup>       |
| CzSe     | 0.17              | $T_1$                 | 7.38×10 <sup>9</sup>       | 4.42×10 <sup>9</sup>       | 6.00×10 <sup>9</sup>       |
|          |                   | T <sub>2</sub>        | 1.80×10 <sup>10</sup>      | 2.04×10 <sup>10</sup>      | 2.48×10 <sup>10</sup>      |
| CzOBr    | 0.07              | $T_1$                 | 6.37×10 <sup>8</sup>       | 4.93×10 <sup>8</sup>       | 4.97×10 <sup>8</sup>       |
|          |                   | T <sub>2</sub>        | 6.52×10 <sup>8</sup>       | 5.56×10 <sup>8</sup>       | 7.98×10 <sup>8</sup>       |
|          |                   | T <sub>3</sub>        | 4.00×10 <sup>7</sup>       | 4.20×10 <sup>7</sup>       | 3.93×10 <sup>7</sup>       |
| CzSBr    | 0.08              | $T_1$                 | 2.84×10 <sup>10</sup>      | 1.85×10 <sup>9</sup>       | 1.81×10 <sup>9</sup>       |
|          |                   | T <sub>2</sub>        | 6.56×10 <sup>6</sup>       | 7.51×10 <sup>6</sup>       | 9.49×10 <sup>6</sup>       |

| CzSeBr | 0.08 | $T_1$ | 7.28×10 <sup>10</sup> | 4.75×10 <sup>10</sup> | 5.43×10 <sup>10</sup> |
|--------|------|-------|-----------------------|-----------------------|-----------------------|
|        |      | $T_2$ | $1.77 \times 10^{10}$ | 4.52×10 <sup>10</sup> | 3.33×10 <sup>10</sup> |

\*Note: Only major contributing ISC channel are given here.

**Table S3b** Calculation of  $k_{ISC}$  (in s<sup>-1</sup>) with different values of Huang-Rhys factor (S).  $\lambda_M=0.3$  eV for CzX and  $\lambda_M=0.2$  eV CzXBr. X=O, S and Se.

|          | C                 | T 1 00 0                | 1 00 1                | 1 00.0                       |
|----------|-------------------|-------------------------|-----------------------|------------------------------|
| Molecule | $S_1 \rightarrow$ | $1_n  k_{ISC}(a) S = 0$ | $k_{ISC}$ (a) $S=1$   | $k_{ISC}$ ( <i>a</i> ) $S=2$ |
| CzO      | T <sub>1</sub>    | 1.08×10 <sup>8</sup>    | 7.38×10 <sup>7</sup>  | 3.97×10 <sup>7</sup>         |
|          | T <sub>3</sub>    | 7.75×10 <sup>5</sup>    | 2.85×10 <sup>5</sup>  | $1.05 \times 10^{5}$         |
| CzS      | T <sub>1</sub>    | 1.76×10 <sup>8</sup>    | 6.96×10 <sup>7</sup>  | 2.73×10 <sup>7</sup>         |
|          | T <sub>2</sub>    | 2.90×10 <sup>9</sup>    | 1.07×10 <sup>9</sup>  | 3.93×10 <sup>8</sup>         |
| CzSe     | T <sub>1</sub>    | 7.38×10 <sup>9</sup>    | 2.80×10 <sup>9</sup>  | 1.06×10 <sup>9</sup>         |
|          | T <sub>2</sub>    | $1.80 \times 10^{10}$   | 6.61×10 <sup>9</sup>  | 2.43×10 <sup>9</sup>         |
| CzOBr    | T <sub>1</sub>    | 1.59×10 <sup>8</sup>    | 4.96×10 <sup>8</sup>  | 3.65×10 <sup>8</sup>         |
|          | T <sub>2</sub>    | 1.45×10 <sup>9</sup>    | 5.67×10 <sup>8</sup>  | $2.22 \times 10^{8}$         |
|          | T <sub>3</sub>    | 1.09×10 <sup>8</sup>    | 4.01×10 <sup>7</sup>  | 1.48×10 <sup>7</sup>         |
| CzSBr    | T <sub>1</sub>    | 6.12×10 <sup>9</sup>    | 2.31×10 <sup>10</sup> | $1.74 \times 10^{10}$        |
|          | T <sub>2</sub>    | 2.06×10 <sup>7</sup>    | 7.60×10 <sup>6</sup>  | 2.80×10 <sup>6</sup>         |
| CzSeBr   | T <sub>1</sub>    | $2.55 \times 10^{10}$   | 4.75×10 <sup>10</sup> | 3.25×10 <sup>10</sup>        |
|          | T <sub>2</sub>    | 6.14×10 <sup>10</sup>   | 2.28×10 <sup>10</sup> | 8.46×10 <sup>9</sup>         |
|          |                   |                         |                       |                              |

**Table S4:** HOMO, LUMO and energy gap ( $\Delta E_{HL}$ ) of all molecules in eV using  $\mathcal{O}^*B97XD$  functional.

| Molecules | HOMO   | LUMO   | $\Delta E_{HL}$ |
|-----------|--------|--------|-----------------|
| CzO       | -6.576 | -0.275 | 6.301           |
| CzS       | -6.523 | -0.367 | 6.156           |
| CzSe      | -6.499 | -0.286 | 6.213           |
| CzOBr     | -6.911 | -0.757 | 6.154           |
| CzSBr     | -6.848 | -0.809 | 6.039           |
| CzSeBr    | -6.8   | -0.775 | 6.025           |
|           |        |        |                 |











Fig. S1 NTO of singlet and triplet states.