Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Material

Uranyl N2O2-Schiff Base Complex as Co-catalyst in Ethanol							
Electro-oxidation: Synthesis, Crystallographic, Spectroscopic,							
Electrochemical, and DFT Characterization, and Catalytic							
Investigation							
Elizomar Medeiros Barbosa ^a ; Kaique Souza Soares ^a ; Thiago Henrique Döring ^b , Igor Vinicius de França ^b , Lucas dos S. Mello ^c , Glaucio R. Nagurniak ^d , Renato L. T. Parreira ^e ; Felipe T. Martins ^f ; Edward Ralph Dockal ^c ; Elson Almeida Souza ^a ; Paulo José Sousa Maia ^{g*} ; José Wilmo da Cruz Jr. ^{*b}							
^a Instituto de Ciências Exatas e tecnologia, Universidade Federal do Amazonas, Itacoatiara, AM, Brazil;							
^b Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Rua João Pessoa 2514, Blumenau, SC, Brazil;							
^c Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP, Brazil;							
^d Department of Chemistry, State University of Ponta Grossa, Ponta Grossa - PR, 84030-900, Brazil.							
^e Center of research in exact sciences and technologies, University of Franca, Franca - SP, 14404-600, Brazil.							
^f UFG, Universidade Federal de Goiás, Instituto de Química, Goiânia - GO, 74690-900, Brazil.							
^g GEQBio: Grupo de Eletrocatálise, Fotoquímica Inorgânica e Química Bioinorgânica, Instituto Multidisciplinar de Química, Centro Multidisciplinar							

List of Tables

Table S1.¹H (400 MHz) and ¹³C (100 MHz) data of H₂L and [UO₂(L)H₂O] in DMSO- d_6 (25 °C) with tetramethylsilane (TMS), as internal standard (chemical shifts in ppm and J in Hz).....4 Table S2. Experimental (190-800 nm, Acetonitrile, 25°C) and theoretical (ZORA-PBE/Def2-TZVPP-3BJ//SARC-TZVPP – SMD-Acetonitile) UV-Vis attribution (λ in nm and ϵ in L^{*}mol^{-1*}cm⁻¹)....8

List of Figures

Figure S1.¹H NMR spectrum (400 MHz, DMSO- d_6) of 3-OMe-c-salcn. ... 5 Figure S2. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of 3-OMe-c-salcn...5 Figure S3. Infrared spectra (4000-450 cm⁻¹, KBr) $[UO_2(3OMe-c-$ Figure S4. ¹H NMR spectrum (400 MHz, DMSO- d_6) of [UO₂(30Me-c-Figure S5. ¹³C NMR spectrum (400 MHz, DMSO- d_6) of [UO₂(30Me-c-Figure S6. Optimized geometry of $cis - [UO_2(3-OMe-c-salcn)(H_2O)]$ at DKH-PBE/Def2-TZVPP-D3BJ//SARC-TZVPP level of theory.....7 Figure S7. Optimized geometry of trans-[UO₂(3-OMe-c-salcn)(H₂O)] at DKH-PBE/Def2-TZVPP-D3BJ//SARC-TZVPP level of theory......8 Figure S8. [UO₂(3-OMe-*c*-salcn)H₂O] UV-Vis electronic spectra (200-800 nm, acetonitrile, 25°C)......9 Figure S9. Gaussian analysis of $[UO_2(3-OMe-c-salcn)H_2O]$ for electronic spectrum in the 50000-20000 cm⁻¹ (200-500 nm, Acetonitrile, 25°C) region.....10 Figure S10. UV-VIS spectrum of [UO₂(3-OMe-*c*-salcn)H₂O] calculated at ZORA-PBE/Def2-TZVPP-3BJ//SARC-TZVPP (SMD-acetonitrile) level Figure S11. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 1003 nm.11 Figure S12. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 835 nm.11 Figure S13. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 612 nm.12 Figure S14. Molecular orbitals involved at calculated light absorption processes of $[UO_2(3-OMe-c-salcn)H_2O]$ at calculated light absorption processes of $[UO_2(3-OMe-c-salcn)H_2O]$ around 411 nm. ...13 Table S1. ¹H (400 MHz) and ¹³C (100 MHz) data of H₂L and $[UO_2(L)H_2O]$ in DMSO- d_6 (25 °C) with tetramethylsilane (TMS), as internal standard (chemical shifts in ppm and J in Hz).

triplet, m = multiplet.

Figure S1.¹H NMR spectrum (400 MHz, DMSO- d_6) for 3-OMe-c-salcn.

Figure S2.¹³C NMR spectrum (100 MHz, DMSO- d_6) for 3-OMe-c-salcn.

Figure S3. Infrared spectra (4000-450 cm⁻¹, KBr) for $[UO_2(30Me-c-salcn)H_2O]$.

Figure S4. ¹H NMR spectrum (400 MHz, DMSO- d_6) for [UO₂(30Me-c-salcn)H₂O].

Figure S5. ¹³C NMR spectrum (400 MHz, DMSO- d_6) for [UO₂(30Me-c-salcn)H₂O].

Figure S6. Optimized geometry for *cis*-[UO₂(3-OMe-*c*-salcn)(H₂O)] at DKH-PBE/Def2-TZVPP-D3BJ//SARC-TZVPP level of theory.

Figure S7. Optimized geometry for *trans*-[UO₂(3-OMe-*c*-salcn)(H₂O)] at DKH-PBE/Def2-TZVPP-D3BJ//SARC-TZVPP level of theory.

Table S2.Experimental (190-800 nm, Acetonitrile, 25°C) andtheoretical (ZORA-PBE/Def2-TZVPP-3BJ//SARC-TZVPP - SMD-Acetonitrile) UV-Vis attribution (λ in nm and ϵ in L*mol^{-1*}cm⁻¹).

		Experin	nental	Theoretical		
Comp	Observed		G.	А	λ	Assignment
	$\lambda_{\text{máx}}$	Emáx	$\lambda_{\text{máx}}$	E máx	Mmax	
[UO2(L)H2O]					1002	LMCT
					2002	$(p\pi \rightarrow f\pi)$
					835	LMCT
					C1C	LMCT
				010		$(p\pi \rightarrow f\pi)$
	344	7311	482	33		-
			401	1900	411	LMCT
						$(p\pi \rightarrow f\pi)$
						π→ π*

			347	4400		LMCT
	269	21500	282	10300		LMCT
208	21300	268	8800	π→	π*(N=C)	
	226	61000	239	31600	π→	π*(C=C)
1 236	01000	229	35900	π→	π*(C=C)	

G.A – Gaussian analysis

Figure S8.[$UO_2(3-OMe-c-salcn)H_2O$] UV-Vis electronic spectra (200-800 nm, acetonitrile, 25°C).

Figure S9. Gaussian analysis of $[UO_2(3-OMe-c-salcn)H_2O]$ for electronic spectrum in the 50000-20000 cm⁻¹ (200-500 nm, Acetonitrile, 25°C) region.

Figure S10. UV-VIS spectrum for [UO₂(3-OMe-*c*-salcn)H₂O] calculated at ZORA-PBE/Def2-TZVPP-3BJ//SARC-TZVPP (SMD-acetonitrile) level of theory.

Figure S11. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 1003 nm.

Figure S12. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 835 nm.

Figure S13. Molecular orbitals involved at calculated light absorption process of $[UO_2(3-OMe-c-salcn)H_2O]$ at 612 nm.

Figure S14. Molecular orbitals involved at calculated light absorption processes of $[UO_2(3-OMe-c-salcn)H_2O]$ around 411 nm.