Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Fig. S1. The model performance as a function of the number of features, evaluated by (a) R², (b) MAE, and (c) RMSE. These analysis schemes were obtained from leave-one-out cross-validation, and the model performance was examined using a range of 12-112 features in increments of 20 features. With the increase of the number of features, the model is gradually over-fitted.

Fig. S2. XRD patterns of (a) Ba_2LaNbO_6 : $0.003Mn^{4+}$, (b) Ba_2YNbO_6 : $0.005Mn^{4+}$, (c) Sr_2LaSbO_6 : $0.008Mn^{4+}$, and (d) Mg_2TiO_4 : $0.004Mn^{4+}$. Above: standard pattern. Below: experimental data.

Fig. S3. photoluminescence excitation (PLE) and photoluminescence (PL) spectrum of (a) Ba_2LaNbO_6 : 0.003Mn⁴⁺, (b) Ba_2YNbO_6 : 0.005Mn⁴⁺, (c) Sr_2LaSbO_6 : 0.008Mn⁴⁺, and (d) Mg_2TiO_4 : 0.004Mn⁴⁺.

Composition	Wavelength (nm)	Composition	Wavelength (nm)
$(NH_4)_2NaInF_6$	631	Ca_2ScSbO_6	693
$(NH_4)_2SiF_6$	630	$Ca_2WO_2F_4$	632
$(NH_4)_2SnF_6$	630	$CaMg_2Al_{16}O_{27}$	655
$(NH_4)_2 TiF_6$	630	$CaMg_2Al_{16}O_{27}$	655
Ba_2CaWO_6	680	Cs_2GeF_6	633
Ba ₂ GdNbO ₆	676	Cs_2HfF_6	630
Ba ₂ LaNbO ₆	685	Cs ₂ KCrF ₆	632
Ba_2LaSbO_6	678	$Cs_2NaAl_3F_{12}$	633
Ba ₂ LuNbO ₆	698	Cs_2SiF_6	632
Ba_2LuTaO_6	700	Cs_2ZrF_6	633
Ba ₂ MgWO ₆	720	$CsMoO_2F_3$	633
Ba_2MgWO_6	725	Gd_2ZnTiO_6	705
Ba_2YNbO_6	695	Gd_2ZnTiO_6	705
Ba_2YTaO_6	690	$K_2BaGe_8O_{18}$	666
BaGe ₄ O ₉	666	K ₂ GeF ₆	635
BaGeF ₆	634	K ₂ LiAlF ₆	635
$BaLaMgNbO_6$	700	K_2NaInF_6	631
BaLaZnTaO ₆	695	K_2SiF_6	632
$BaSn(PO_4)_2$	660	K ₂ TiF ₆	632
$BaSnF_6$	631	K ₃ AlF ₆	628
$BaTiF_6$	632	KGaP ₂ O ₇	702
BaTiOF ₄	631	KNaSiF ₆	630
BaZn _{1.06} Al _{9.94} O ₁₇	665	KZnF ₃	636
$Ca_{14}Al_{10}Zn_6O_{35}$	710	La(MgTiO ₆) _{0.5}	708
$Ca_{14}Zn_6Ga_{10}O_{35}$	711	La ₂ ZnTiO ₆	708
Ca ₂ AlNbO ₆	712	La ₃ GaGe ₅ O ₁₆	659
Ca ₂ InSbO ₆	693	LaAlO ₃	731
Ca_2LaSbO_6	680	LaScO ₃	703

Composition	Wavelength (nm)	Composition	Wavelength (nm)
Ca ₂ LaTaO ₆	696	LaSrZnNbO ₆	694
Ca ₂ MgWO ₆	690	LaSrZnSbO ₆	706
Ca ₂ MgWO ₆	700	LaTiSbO ₆	685
Li ₂ MgZrO ₄	670	LiSrAlF ₆	618
Li_2SnO_3	658	Mg7Ga2GeO12	660
$Li_2ZnTi_3O_8$	681	Na _{1.57} Zn _{0.57} Al _{10.43} O ₁₇	695
$Li_3Mg_2NbO_6$	668	Na_2GeF_6	620
$Li_5La_3Nb_2O_{12}$	715	$Na_2MgAl_{10}O_{17} \\$	695
$Li_5La_3Ta_2O_{12}$	714	Na ₂ NbF ₅ O	620
$Li_6SrLa_2Sb_2O_{12}$	705	Na_2SiF_6	620
LiLa ₂ SbO ₆	725	Na ₃ AlF ₆	628

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
(GdNa) _{0.5} TiO ₃	642	666	685	689	688	688
$(Na_2Mg)Si(SiO_4)_3$	647	669	656	663	671	681
$(NH_4)_3GeF_7$	641	627	612	606	632	606
$(NH_4)_3InF_6$	629	646	630	631	642	618
$(NH_4)_3SnF_7$	641	627	613	607	632	601
Ba _{0.82} Mg. ₆₃ Al _{10.37} O ₁₇	679	672	684	688	675	678
Ba_2GdNbO_6	696	696	713	717	697	707
Ba_2GdSbO_6	681	698	716	720	704	657
Ba_2LaNbO_6	701	691	708	710	696	710
Ba_2LuNbO_6	696	699	715	716	696	709
$Ba_2NaNb_5O_{15}$	669	674	681	678	682	667
$Ba_2Nb_{15}O_{32}$	671	663	687	685	659	674
$Ba_2Nb_5O_9$	696	695	704	703	694	709
Ba_2SnO_4	707	692	704	703	696	697
Ba_2SrWO_6	700	701	714	717	716	704
Ba_2TiZrO_6	695	701	713	718	682	703
Ba ₂ YNbO ₆	702	696	704	707	694	709
$Ba_3Al_2Si_3O_{12}$	707	682	684	681	661	688
$Ba_3CaSb_2O_9$	704	693	700	704	692	688
$Ba_3LaNb_3O_{12}$	694	693	706	706	693	700
Ba ₃ MgNb ₂ O ₉	696	697	708	712	698	707
$Ba_3MgSb_2O_9$	696	695	710	714	701	699
Ba ₃ MgTa ₂ O ₉	692	702	723	726	716	706
Ba ₃ NaNbO ₆	703	694	693	692	691	700
Ba_3NaSbO_6	703	694	695	695	691	699
Ba ₃ NaTaO ₆	701	694	701	700	692	696
$Ba_3Nb_6Si_4O_{26}$	660	663	678	678	687	672
$Ba_3SrSb_2O_9$	698	694	705	707	696	692
$Ba_3Ta_6Si_4O_{26}$	670	678	696	693	694	679
$Ba_3ZnTa_2O_9$	695	701	726	728	715	709
$Ba_4Na_2W_2O_{11}$	688	695	709	706	716	694
$Ba_4NaSb_3O_{12}$	678	681	670	673	683	677
$Ba_4Sn_2Y_2O_{11}$	698	698	710	713	690	703
$Ba_5Li_2W_3O_{15}$	685	686	709	704	713	691
Ba5W3.04Li0.96O14.6	702	695	710	706	716	695
$Ba_6Nb_{14}Si_4O_{47}$	670	664	681	672	660	656
$Ba_9Sc_2Si_6O_{24}$	711	687	686	684	661	684
$BaAl_{12}O_{19}$	685	691	691	691	697	693
BaGeF ₆	629	631	632	624	632	632
$BaLa_2Sc_2O_7$	697	697	705	707	703	711
$BaNb_{10}SiO_{19}$	672	669	693	685	683	673
$BaNb_2O_6$	676	666	680	678	659	669
BaNbO ₃	715	695	706	705	695	706
BaSi ₄ O ₉	645	649	668	671	672	675

 Table S2. The prediction results (nm) of each model to the prediction set.

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
BaSnO ₃	709	695	707	706	696	700
BaSnSi ₃ O ₉	645	657	677	677	669	669
BaTi ₇ MgO ₁₆	668	683	684	690	680	685
BaTiF ₆	641	630	627	618	632	628
BaTiSi ₃ O ₉	658	660	674	674	682	674
BaY_2SbO_6	707	692	707	710	694	708
BaZrO3	705	694	701	699	696	697
Ca(TiO)(SiO ₄)	650	671	660	659	668	671
$Ca_{0.5}TaO_3$	689	695	696	693	700	689
$Ca_2Gd_3Sb_3O_{14}$	661	686	667	674	682	682
$Ca_2La_3Sb_3O_{14}$	683	688	687	689	686	700
Ca ₂ LaSbO ₆	706	692	686	688	689	693
Ca ₂ LuNbO ₆	703	696	692	694	693	705
$Ca_2Nb_2O_7$	686	661	656	650	657	642
$Ca_2Sb_2O_7$	689	670	668	665	659	664
$Ca_2 Y_3 Sb_3 O_{14}$	683	692	685	688	691	699
$Ca_2ZrSi_4O_{12}$	641	663	648	647	668	654
$Ca_3Al_2O_6$	683	662	657	657	672	675
$Ca_3Al_2Si_3O_{12}$	688	675	656	655	667	674
$Ca_3Ga_2Ge_4O_{14}$	663	679	674	678	676	675
$Ca_3Ga_2Si_3O_{12}$	676	676	661	659	669	674
$Ca_3Sc_2Si_3O_{12}$	685	675	656	654	667	673
$Ca_3SnSi_2O_9$	686	671	660	659	668	656
Ca ₃ WO ₆	703	677	678	676	687	675
$CaMg_2Al_6O_{12}$	683	683	673	677	669	688
$CaNb_2O_6$	667	662	669	669	696	669
CaNbO ₃	706	668	669	669	671	676
$CaSc_2O_4$	664	658	656	654	654	651
$CaSi_2O_5$	655	653	653	655	694	669
CaSiO ₃	689	671	673	673	701	685
CaSnO ₃	714	678	676	675	699	676
CaTiGeO ₅	661	672	668	667	667	683
CaYAlO ₄	674	697	685	688	702	705
$CaZr_4O_9$	686	675	666	662	659	651
CaZrGeO ₅	663	673	669	666	677	673
CaZrO ₃	704	672	674	673	702	680
Cs_2GeF_6	639	630	623	615	632	623
Cs_2KTiF_6	633	638	637	639	631	623
Cs_2NaInF_6	631	636	618	622	626	599
Cs_2NaScF_6	632	637	613	616	626	601
Cs_2NaTiF_6	634	636	641	641	631	621
$Cs_2Nb_4O_{11}$	665	654	649	645	648	647
CsSbTeO ₆	687	665	690	686	695	683
CsTiF ₄	640	630	629	619	632	624
K(SbO)(SiO ₄)	658	659	663	660	689	664

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
K _{1.58} Al ₁₁ O ₁₇	694	663	658	657	666	656
$K_2BaGe_8O_{18}$	639	659	665	664	661	656
$K_2Ge_4O_9$	658	652	654	653	657	653
K ₂ GeSi ₆ O ₁₅	630	656	651	652	670	658
K ₂ LaTa ₅ O ₁₅	678	693	694	692	690	683
K ₂ LiAlF ₆	633	636	604	607	632	607
K_2NaAlF_6	633	637	603	606	632	606
K_2NaInF_6	633	637	608	611	632	600
$K_2NaSb_3O_9$	682	679	664	664	693	664
K_2NaScF_6	633	637	613	615	632	610
$K_2SnSi_3O_9$	644	657	657	657	676	661
$K_2SrTa_2O_7$	699	700	697	701	694	690
$K_2Ta_4O_{11}$	682	685	698	695	699	682
Ca_2LaSbO_6	706	692	686	688	689	693
Ca ₂ LuNbO ₆	703	696	692	694	693	705
$Ca_2Nb_2O_7$	686	661	656	650	657	642
$Ca_2Sb_2O_7$	689	670	668	665	659	664
$Ca_2Y_3Sb_3O_{14}$	683	692	685	688	691	699
$Ca_2ZrSi_4O_{12}$	641	663	648	647	668	654
$Ca_3Al_2O_6$	683	662	657	657	672	675
$Ca_3Al_2Si_3O_{12}$	688	675	656	655	667	674
$Ca_3Ga_2Ge_4O_{14}$	663	679	674	678	676	675
$Ca_3Ga_2Si_3O_{12}$	676	676	661	659	669	674
$Ca_3Sc_2Si_3O_{12}$	685	675	656	654	667	673
$Ca_3SnSi_2O_9$	686	671	660	659	668	656
Ca_3WO_6	703	677	678	676	687	675
$CaMg_2Al_6O_{12}$	683	683	673	677	669	688
$CaNb_2O_6$	667	662	669	669	696	669
CaNbO ₃	706	668	669	669	671	676
$CaSc_2O_4$	664	658	656	654	654	651
$CaSi_2O_5$	655	653	653	655	694	669
CaSiO ₃	689	671	673	673	701	685
$CaSnO_3$	714	678	676	675	699	676
CaTiGeO ₅	661	672	668	667	667	683
CaYAlO ₄	674	697	685	688	702	705
$CaZr_4O_9$	686	675	666	662	659	651
CaZrGeO ₅	663	673	669	666	677	673
CaZrO ₃	704	672	674	673	702	680
Cs_2GeF_6	639	630	623	615	632	623
Cs ₂ KTiF ₆	633	638	637	639	631	623
Cs_2NaInF_6	631	636	618	622	626	599
Cs_2NaScF_6	632	637	613	616	626	601
Cs_2NaTiF_6	634	636	641	641	631	621
$Cs_2Nb_4O_{11}$	665	654	649	645	648	647

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
CsSbTeO ₆	687	665	690	686	695	683
CsTiF ₄	640	630	629	619	632	624
$K(SbO)(SiO_4)$	658	659	663	660	689	664
$K_{1.58}Al_{11}O_{17}$	694	663	658	657	666	656
$K_2BaGe_8O_{18}$	639	659	665	664	661	656
$K_2Ge_4O_9$	658	652	654	653	657	653
$K_2GeSi_6O_{15}$	630	656	651	652	670	658
K ₂ LaTa ₅ O ₁₅	678	693	694	692	690	683
K_2LiAlF_6	633	636	604	607	632	607
K_2NaAlF_6	633	637	603	606	632	606
K_2 NaIn F_6	633	637	608	611	632	600
$K_2NaSb_3O_9$	682	679	664	664	693	664
$K_2 NaScF_6$	633	637	613	615	632	610
$K_2SnSi_3O_9$	644	657	657	657	676	661
$K_2SrTa_2O_7$	699	700	697	701	694	690
$K_2Ta_4O_{11}$	682	685	698	695	699	682
$K_2 TiO_3 (SiO_2)_6$	628	657	643	643	668	658
K ₂ TiSi ₃ O ₉	680	661	648	646	674	654
$K_2ZrSi_3O_9$	673	663	652	651	668	657
$K_3(Nb_3O_6)(Si_2O_7)$	681	660	660	659	679	668
$K_3ScSi_2O_7$	683	675	658	658	688	669
$K_4Sn_2Si_6O_{18}$	643	656	651	649	674	646
$K_4Zr_5O_{12}$	697	666	668	668	699	672
KLuTa ₂ O ₇	701	696	707	707	696	706
$KNaSiF_6$	637	639	608	609	632	619
KNb_8O_{14}	695	670	672	671	659	675
KNbO ₃	691	663	668	668	696	676
$KScO_2$	683	668	666	666	699	674
KTaO ₃	710	695	695	692	700	688
KYTa ₂ O ₇	702	695	696	698	687	700
La ₂ MgGeO ₆	692	697	712	716	700	710
La_2NaTaO_6	701	694	708	707	698	696
$La_2SrAl_2O_7$	688	706	710	715	701	722
La ₃ LiTi ₄ O ₁₂	704	693	696	695	689	702
LaCaGaO ₄	688	705	708	712	701	706
$LaK_2(Nb_5O_{15})$	657	669	677	678	688	668
$LaMgAl_{11}O_{19}$	675	683	690	694	675	684
$LaSrScO_4$	700	705	703	708	703	710
Li _{0.5} La _{0.5} TiO ₃	699	691	677	679	688	702
$Li_{0.5}TiO_2$	687	661	655	654	674	664
Li_2GeF_6	634	628	599	588	624	612
$Li_2La_2Ti_3O_{10}$	689	699	680	680	674	703
$Li_2MgSi_2(SiO_4)_3$	634	666	651	659	668	678
Li ₂ MgTi ₃ O ₈	682	685	663	668	671	677

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
Li ₂ TiO ₃	669	660	651	648	655	652
Li_2ZrF_6	635	631	607	598	632	618
Li ₃ InF ₆	633	630	608	595	624	600
$Li_3Na_3In_2F_{12}$	632	636	602	604	631	604
Li ₃ TiF ₆	621	626	591	580	624	600
$Li_6Zr_2O_7$	666	661	656	655	697	656
Li_8SnO_6	681	664	655	655	698	655
LiAl ₅ O ₈	655	652	647	646	655	651
LiAlO ₂	682	668	655	655	697	674
LiBaAlF ₆	631	645	599	606	632	610
LiCaAlF ₆	631	644	615	623	632	628
LiGaO ₂	711	691	674	672	703	685
LiGaSi ₂ O ₆	639	661	653	652	671	666
LiMgAlF ₆	633	642	609	614	632	617
LiScGe ₂ O ₆	650	668	663	662	686	670
LiScGeO ₄	681	673	663	662	702	665
$LiScO_2$	681	666	658	657	698	664
$LiSrAlF_6$	631	645	615	622	631	624
LiTaSiO ₅	658	671	669	666	700	670
LiTi ₂ O ₄	690	661	655	654	694	666
LiTiO ₂	695	667	664	663	700	678
LiTiSi ₂ O ₆	637	663	649	649	662	661
Mg_2SnO_4	701	665	666	665	695	664
$Mg_4Nb_2O_9$	698	671	667	667	697	663
$MgNb_2O_6$	667	665	668	668	697	668
MgScAlO ₄	676	688	673	676	665	688
MgTiO ₃	685	666	665	664	700	664
Na(SbO)(SiO ₄)	642	655	659	656	689	663
$Na_{1.77}Al_{11}O_{17}$	691	663	655	654	667	659
$Na_2Ba_4W_2O_{11}$	697	701	699	699	716	696
$Na_2Ca_2Nb_4O_{13}$	668	687	674	678	695	652
$Na_2Ca_2Ta_3O_{10}$	701	700	697	700	696	700
Na ₂ GeF ₆	636	625	598	588	624	608
Na ₂ MgAlF ₇	632	646	605	613	632	614
$Na_2Nb_4O_{11}$	661	655	664	662	657	662
$Na_2Si_3O_7$	646	652	651	653	698	668
Na_2SnO_3	681	665	664	663	693	655
$Na_2Ta_4O_{11}$	685	684	695	691	700	679
$Na_2Ti_2O_3(SiO_4)$	685	677	649	647	668	658
Na ₂ TiOSi ₄ O ₁₀	657	661	644	644	668	654
Na ₂ TiSi ₅ O ₁₃	642	657	640	641	668	660
$Na_2ZrSi_4O_{11}$	628	658	648	648	662	659
Na_3AlF_6	636	628	607	597	631	621
Na ₃ Ca ₂ TaO ₆	691	696	676	679	699	681

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
Na ₃ Li ₃ Al ₂ F ₁₂	632	635	597	599	632	600
$Na_3Li_3Sc_2F_{12}$	632	635	597	599	632	600
Na ₃ Li ₃ Ti ₂ F ₁₂	632	635	598	600	632	603
Na ₃ ScF ₆	636	628	607	597	631	614
$Na_3ScSi_2O_7$	681	673	650	649	676	663
$Na_4Sc_2Ge_4O_{13}$	680	668	665	662	682	666
$Na_4Sc_2Si_4O_{13}$	678	668	655	653	680	665
$Na_4Sn_2(SiO_4)_3$	680	662	657	657	660	659
$Na_4Sn_3O_8$	691	661	664	663	694	657
$Na_5Ti_6O_{13}$	655	662	662	658	655	659
$Na_6Li_2W_2O_{10}$	681	684	674	673	702	673
$Na_8Si(Si_6O_{18})$	669	654	647	649	673	665
Na ₈ SnSi ₆ O ₁₈	687	656	649	651	694	651
NaAlO ₂	684	667	663	663	699	680
NaBa ₄ Sb ₃ O ₁₂	703	697	691	693	685	698
$NaCa_2Ta_3O_{10}$	699	700	694	695	692	689
NaCa ₄ Nb ₅ O ₁₇	683	686	613	617	654	639
NaCa ₅ TaO ₈	687	688	672	676	693	677
NaGaSi ₂ O ₆	640	662	658	657	671	660
NaLaTi ₂ O ₆	704	695	679	681	683	700
$NaNb_3Te_4O_{16}$	638	661	668	663	683	673
NaNbO ₃	684	662	664	665	696	672
NaSbGeO ₅	648	665	668	667	699	677
NaSbO ₃	698	670	672	671	695	679
NaScGe ₂ O ₆	648	667	662	661	672	666
NaScO ₂	682	668	663	663	699	672
NaScSi ₂ O ₆	640	664	651	651	670	664
NaSr ₂ Nb ₅ O ₁₅	668	680	669	672	692	665
NaSr ₄ Sb ₃ O ₁₂	692	687	683	683	685	685
NaTaO ₃	712	695	691	688	701	686
NaTi ₂ Ga ₅ O ₁₂	673	688	666	668	667	679
NaTi ₈ O ₁₃	695	662	663	660	655	661
NaTiSi ₂ O ₆	641	662	654	653	662	659
NaYTiO ₄	694	689	676	680	683	680
$Rb_{12}Nb_{33}O_{90}$	663	653	666	666	655	660
$Rb_{2.6}Al_{22}O_{34}$	694	660	667	666	667	662
$Rb_2Ge_4O_9$	658	653	665	663	659	660
Rb ₂ GeTeO ₆	677	663	687	683	681	689
Rb ₂ KScF ₆	634	637	627	629	632	618
Rb ₂ KTiF ₆	633	638	625	627	631	617
Rb_2NaAlF_6	633	637	607	611	632	603
Rb_2NaTiF_6	633	638	628	630	631	620
$Rb_2SnSi_3O_9$	647	657	670	670	666	668
$Rb_2TiSi_3O_9$	684	662	667	667	667	676
$RbAl_3(P_3O_{10})_2$	659	675	660	663	669	663

Composition	XGB.r	RF.r	Lasso.r	R.r	KNN.r	SVM.r
RbAlTi ₃ O ₈	692	687	683	689	691	679
$RbCa_2Nb_3O_{10}$	688	688	686	692	691	698
$RbNb(SiO_3)O_2$	658	658	662	658	683	658
RbNbGe ₃ O ₉	687	661	672	673	689	675
RbTaGe ₃ O ₉	691	670	680	679	689	669
$Sr_{0.5}Al_{11}O_{17}$	669	660	664	663	667	658
$Sr_2Al_6O_{11}$	671	661	670	666	655	662
Sr_2LaSbO_6	707	692	700	702	693	704
Sr ₂ LuNbO ₆	696	694	705	707	691	709
$Sr_2Sc_{0.5}Al_{1.5}O_5$	693	694	685	689	691	699
Sr_2ScGaO_5	690	694	680	681	668	681
Sr_2ScSbO_6	706	694	698	702	693	704
Sr_2SnO_4	707	688	690	689	700	688
$Sr_2Ta_2O_7$	684	681	673	667	660	653
Sr_2YSbO_6	704	695	691	695	702	699
Sr ₃ MgTa ₂ O ₉	695	702	710	713	716	700
Sr_3NaNbO_6	696	687	680	680	699	692
Sr_3NaSbO_6	704	693	683	683	699	692
Sr_3NaTaO_6	699	694	690	688	699	689
$Sr_3Ta_6Si_4O_{26}$	666	677	687	685	695	669
$Sr_3Zr_2O_7$	707	680	686	683	672	677
$Sr_4Ti_5(Si_2O_7)_2O_8$	663	667	675	670	678	671
$Sr_7Na_2Al_6F_{34}$	627	635	602	604	629	590
$Sr_7Zr(Si_2O_7)_3$	633	648	638	646	631	634
SrAl ₈ Ti ₃ O ₁₉	669	672	676	670	659	648
$SrGd_2Sc_2O_7$	702	700	707	711	701	701
$SrLa_2Sc_2O_7$	700	697	696	698	702	704
SrLi ₂ Ti ₆ O ₁₄	664	666	666	660	661	657
$SrNb_2O_6$	676	666	678	677	657	676
$SrNb_4O_6$	713	694	695	694	697	699
$SrNb_8O_{14}$	692	673	682	681	659	682
SrNbO ₃	712	693	689	689	696	695
$SrSi_2O_5$	660	654	667	668	671	674
$SrSnO_3$	718	694	695	694	700	693
SrZrO ₃	707	687	686	685	699	688
SrZrSi ₂ O ₇	641	662	669	668	667	672

Feature number	Variable	Feature number	Variable
1	Fluoride/Oxide/Oxyfluoride (1/2/3)	14	Difference between oxidation state of Mn^{4+} and substitute element
2	Number of element type	15	Difference between ionic radii of Mn^{4+} and that of the substitute element (Å)
3	Crystal system	16	Average electronegativity
4	Space group	17	Average ionization energy (kJ/mol)
5	Number of molecules in unit cell(Z)	18	Average electron affinity energy (<i>kJ/mol</i>)
6	Crystal volume (Å ³)	19-24	lattice (Å)
7	Crystal density (g/cm^3)	25-30	bond length (Å)
8	Species of Octahedra	31-42	Edge length of octahedron $(^{\text{\AA}})$
9	Number of substitutable octahedrons	43-57	Bond angle
10	Number of irreplaceable octahedrons	58-62	Whether the element is an activator or not (takes 1/0)
11	Number of atoms in unit cell	63-67	Atomic number of elements
12	Ionic radii of substituted elements (^Å)	68-72	Oxidation state
13	Coordination number (CN)	73-77	Electronegativity

Table S3. Feature set.

Feature number	Variable	Feature number	Variable
78-82	Ionization energy (kJ/mol)	98-102	Number of valence electrons present in highest sub-shell (0/1/2)
83-87	Electron affinity energy (kJ/mol)	103-107	Total Valence Electrons
88-92	Number of valence electrons present in lowest sub-shell $(1/2/3)$	108-112	The number of atoms per element
93-97	Number of valence electrons present in middle sub-shell (0/1/2)		

	Temperature (°C)	Time (h)
Sr ₂ ScSbO ₆ : 0.004Mn ⁴⁺	1350	12
Ba ₂ YNbO ₆ : Mn ⁴⁺	1350	8
Ba ₂ YSbO ₆ : 0.01Mn ⁴⁺	1300	10
Sr_2LaSbO_6 : 0.008Mn ⁴⁺	1300	6
$Mg_{2}TiO_{4}: 0.004Mn^{4+}$	1250	9
Sr_2LaSbO_6 : 0.003Mn ⁴⁺	1300	6

Table S4. Synthesis conditions of samples.

	O/F/O F	lat_para	cryst_de	species_octahed	valence_	num_atomic	valence	EA_3	valence	IE_4	EA_4	num_VEPM	AVG_E
(NH ₄) ₂ NaIn F ₆	1	8.67	2.94	1	3	8	1	72.77	1	495.85	52.87	0	146.27
(NH ₄) ₂ SiF ₆	1	8.40	2.00	1	4	8	1	72.77	-1	1681.0 0	328.1 6	5	157.95
$(\mathrm{NH}_4)_2\mathrm{SnF}_6$	1	6.08	2.86	1	4	2	1	72.77	-1	1681.0 0	328.1 6	5	156.38
(NH ₄) ₂ TiF ₆	1	5.97	2.21	1	4	2	1	72.77	-1	1681.0 0	328.1 6	5	150.51
$\mathrm{Ba}_{2}\mathrm{CaWO}_{6}$	2	8.39	6.69	1	6	8	2	2.37	-2	1313.9 0	140.9 8	4	95.49
Ba ₂ GdNbO ₆	2	8.50	6.72	1	5	4	3	0.00	-2	1313.9 0	140.9 8	4	96.22
Ba ₂ LaNbO ₆	2	6.06	6.41	1	5	4	3	45.35	-2	1313.9 0	140.9 8	4	100.75
Ba ₂ LaSbO ₆	2	6.08	6.54	1	5	2	3	45.35	-2	1313.9 0	140.9 8	4	102.01
Ba ₂ LuNbO ₆	2	8.36	7.25	1	5	8	3	32.81	-2	1313.9 0	140.9 8	4	99.50
Ba ₂ LuTaO ₆	2	8.38	8.21	1	5	8	3	32.81	-2	1313.9 0	140.9 8	4	93.77
Ba ₂ MgWO ₆	2	8.13	7.14	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	95.25
Ba ₂ MgWO ₆	2	8.13	7.14	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	95.25
Ba ₂ YNbO ₆	2	8.44	6.10	2	5	8	3	29.62	-2	1313.9 0	140.9 8	4	92.48
$\mathrm{Ba_2YTaO_6}$	2	8.45	7.07	1	5	8	3	29.62	-2	1313.9 0	140.9 8	4	93.45
BaGe ₄ O ₉	2	11.61	5.15	2	4	9	-2	140.9 8	0	0.00	0.00	0	21.56
BaGeF ₆	1	4.83	4.93	1	4	1	-1	328.1 6	0	0.00	0.00	0	262.73
BaLaMgNb O ₆	2	8.06	6.20	1	5	8	3	45.35	2	737.75	0.00	0	87.74
BaLaZnTaO 6	2	8.09	7.77	1	5	4	3	45.35	2	906.40	0.00	10	10.04
BaSn(PO ₄) ₂	2	5.25	4.37	1	4	2	5	72.04	-2	1313.9 0	140.9 8	4	116.10
$BaSnF_6$	1	7.43	5.20	1	4	3	-1	328.1 6	0	0.00	0.00	0	275.27

Table S5 The parameters of the phosphor characterization that make the KNN.r algorithm perform optimally.

	O/F/O F	lat_para b	cryst_de	species_octahe dra	valence_	num_atomic	valence	EA_3	valence	IE_4	EA_4	num_VEPM	AVG_E
BaTiF ₆	1	7.37	4.37	1	4	0	-1	328.1	0	0.00	0.00	0	40.60
BaTiOF ₄	3	13.76	4.69	1	4	4	-2	140.9 8	-1	1681.0	328.1	5	210.74
$BaZn_{1.06}Al_{9.94}$	2	5.61	4.02	2	3	2	2	0.00	-2	1313.9	140.9 8	4	95.67
$Ca_{14}Al_{10}Zn_6O_3$	2	14.87	3.60	1	3	24	2	0.00	-2	1313.9	140.9 8	4	86.55
$Ca_{14}Zn_6Ga_{10}O_3$	2	15.08	4.28	1	3	56	2	0.00	-2	1313.9	140.9 8	4	82.81
5 Ca2AlNbO6	2	5.42	4.43	2	3	4	5	88.38	-2	1313.9	8 140.9	4	98.08
Ca ₂ InSbO ₆	2	5.69	5.51	2	5	4	3	28.95	-2	1313.9	° 140.9	4	98.05
Ca ₂ LaSbO ₆	2	5.88	5.32	1	5	4	3	45.35	-2	1313.9	8 140.9	4	99.69
Ca ₂ LaTaO ₆	2	5.89	6.04	1	5	4	3	45.35	-2	1313.9	8 140.9	4	92.70
Ca ₂ MgWO ₆	2	5.55	5.49	1	6	4	2	0.00	-2	1313.9	8 140.9	4	92.94
Ca ₂ MgWO ₆	2	5.55	5.49	1	6	4	2	0.00	-2	1313.9	° 140.9	4	92.94
Ca ₂ ScSbO ₆	2	5.62	4.68	1	5	4	3	18.14	-2	1313.9	° 140.9	4	96.97
Ca ₂ WO ₂ F ₄	3	6.28	5.39	1	6	2	-2	140.9	-1	1681.0	8 328.1	5	186.45
CaMg ₂ Al ₁₆ O ₂₇	2	5.59	3.73	7	3	2	2	o 0.00	-2	1313.9	0 140.9	4	97.33
CaMg ₂ Al ₁₆ O ₂₇	2	5.59	3.73	7	3	2	2	0.00	-2	1313.9	8 140.9	4	98.56
Cs ₂ GeF ₆	1	8.99	4.14	1	4	8	-1	328.1	0	0.00	8 0.00	0	242.10
Cs ₂ HfF ₆	1	6.39	5.24	1	4	2	-1	328.1	0	0.00	0.00	0	229.04
Cs ₂ KCrF ₆	1	9.00	4.28	1	3	8	1	6 48.39	-1	1681.0	328.1	5	217.26
$Cs_2NaAl_3F_{12}$	1	7.31	3.82	1	3	2	1	52.87	-1	0 1681.0	328.1	5	233.73
Cs ₂ SiF ₆	1	8.92	3.86	1	4	8	-1	328.1 6	0	0.00	6 0.00	0	243.78

	O/F/O	lat_para_	cryst_de	species_octahe	valence_	num_atomic	valence_	EA 3	valence_	IE 4	EA 4	num_VEPM	AVG_E
0.75	F	b	ns	dra	1	2	3	328.1	4			4	A
Cs_2ZrF_6	1	6.41	4.39	1	4	2	-1	6	0	0.00	0.00	0	233.45
$CsMoO_2F_3$	3	6.46	4.22	1	6	4	-2	140.9 8	-1	1681.0 0	328.1 6	5	197.73
Gd_2ZnTiO_6	2	5.66	7.47	1	4	4	2	0.00	-2	1313.9 0	140.9 8	4	85.35
Gd_2ZnTiO_6	2	5.66	7.47	1	4	4	2	0.00	-2	1313.9 0	140.9 8	4	85.35
K ₂ BaGe ₈ O ₁₈	2	11.73	4.70	4	4	12	2	13.95	-2	1313.9 0	140.9 8	4	124.13
K ₂ GeF ₆	1	5.63	3.44	1	4	2	-1	328.1 6	0	0.00	0.00	0	242.74
K ₂ LiAlF ₆	1	7.84	3.11	1	3	8	1	59.63	-1	1681.0 0	328.1 6	5	216.71
K_2NaInF_6	1	8.56	3.49	1	3	8	1	52.87	-1	1681.0 0	328.1 6	5	214.75
K_2SiF_6	1	8.13	2.72	1	4	8	-1	328.1 6	0	0.00	0.00	0	244.42
K ₂ TiF ₆	1	5.72	3.03	1	4	2	-1	328.1 6	0	0.00	0.00	0	230.37
K ₃ AlF ₆	1	18.84	2.85	5	3	23	-1	328.1 6	0	0.00	0.00	0	219.08
KGaP ₂ O ₇	2	9.87	3.30	1	3	4	5	72.04	-2	1313.9 0	140.9 8	4	110.98
$KNaSiF_6$	1	5.50	2.70	1	4	4	1	52.87	-1	1681.0 0	328.1 6	5	244.92
KZnF ₃	1	4.07	4.02	1	2	1	-1	328.1 6	0	0.00	0.00	0	206.57
La(MgTiO ₆) 0·5	2	3.96	5.96	1	4	1	2	0.00	-2	1313.9 0	140.9 8	4	79.32
La ₂ ZnTiO ₆	2	5.60	6.53	2	4	4	2	0.00	-2	1313.9 0	140.9 8	4	94.42
La ₃ GaGe ₅ O ₁	2	8.09	6.00	1	4	6	3	41.49	-2	1313.9 0	140.9 8	4	121.12
LaAlO ₃	2	5.36	6.52	1	3	2	-2	140.9 8	0	0.00	0.00	0	102.01
LaScO ₃	2	5.79	5.78	1	3	4	-2	140.9 8	0	0.00	0.00	0	97.29
LaSrZnNbO 6	2	8.00	6.24	1	5	4	2	4.63	2	906.40	0.00	10	15.37
LaSrZnSbO ₆	2	5.66	6.61	1	5	2	2	0.00	-2	1313.9 0	140.9 8	4	28.72

	O/F/O F	lat_para b	cryst_de	species_octahe dra	valence 1	num_atomic 2	valence 3	EA_3	valence 4	IE_4	EA_4	num_VEPM 4	AVG_E A
$LaTiSbO_6$	2	5.21	5.54	1	5	1	4	7.62	-2	1313.9 0	140.9 8	4	111.09
Li ₂ MgZrO ₄	2	4.21	3.96	1	4	4	2	0.00	-2	1313.9 0	140.9 8	4	90.54
Li ₂ SnO ₃	2	9.18	6.00	2	4	16	-2	140.9 8	0	0.00	0.00	0	108.25
Li ₂ ZnTi ₃ O ₈	2	8.37	3.97	1	4	8	2	0.00	-2	1313.9 0	140.9 8	4	90.71
Li ₃ Mg ₂ NbO ₆	2	8.56	3.84	1	5	24	2	0.00	-2	1313.9 0	140.9 8	4	92.76
Li ₅ La ₃ Nb ₂ O ₁₂	2	12.80	5.26	2	5	40	3	45.35	-2	1313.9 0	140.9 8	4	104.67
Li ₅ La ₃ Ta ₂ O ₁₂	2	12.81	6.36	1	5	40	3	45.35	-2	1313.9 0	140.9 8	4	99.46
$Li_6SrLa_2Sb_2O_{12}$	2	12.89	5.22	1	5	48	2	4.63	3	538.09	45.35	1	102.03
LiLa ₂ SbO ₆	2	5.72	6.51	1	5	2	3	45.35	-2	1313.9 0	140.9 8	4	109.71
LiSrAlF ₆	1	5.07	3.45	1	3	2	0	549.4 7	0	3.98	1681. 0	2	47.73
Mg7Ga2GeO12	2	25.45	4.30	1	3	14	4	118.9 4	-2	1313.9 0	140.9 8	4	86.08
$\begin{array}{c} Na_{1.57}Zn_{0.57}Al_{10.43}\\ O_{17} \end{array}$	2	5.62	3.43	2	3	5	2	0.00	-2	1313.9 0	140.9 8	4	98.30
Na ₂ GeF ₆	1	9.06	3.19	2	4	6	-1	328.1 6	0	0.00	0.00	0	243.74
Na ₂ MgAl ₁₀ O ₁₇	2	5.61	3.30	2	3	6	2	0.00	-2	1313.9 0	140.9 8	4	97.38
Na_2NbF_5O	3	5.51	3.25	1	5	8	-1	328.1 6	-2	1313.9 0	140.9 8	4	219.54
Na_2SiF_6	1	8.86	2.74	2	4	6	-1	328.1 6	0	0.00	0.00	0	245.42
Na ₃ AlF ₆	1	5.60	2.97	1	3	6	-1	328.1 6	0	0.00	0.00	0	216.93
$Na_3Li_3Al_2F_{12}\\$	1	12.12	2.77	1	3	24	1	59.63	-1	1681.0 0	328.1 6	5	217.27
$Na_3Li_3Sc_2F_{12}$	1	12.61	2.70	1	3	24	1	59.63	-1	1681.0 0	328.1 6	5	215.58
$Na_3Li_3Sc_2F_{12}$	1	12.61	2.70	1	3	24	1	59.63	-1	1681.0 0	328.1 6	5	215.58

	O/F/O F	lat_para_ b	cryst_de ns	species_octahed ra	valence_ 1	num_atomic 2	valence3	EA_3	valence4	IE_4	EA_4	num_VEPM 4	AVG_E A
NaHF ₂	1	3.48	2.15	1	1	3	-1	328.1 6	0	0.00	0.00	0	195.49
NaKSnF ₆	1	6.00	3.40	1	4	4	1	48.39	-1	1681.0 0	328.1 6	5	56.31
$NaKSnF_6$	1	6.00	3.40	1	4	4	1	48.39	-1	1681.0 0	328.1 6	5	241.95
NaLaMgTe O ₆	2	5.53	5.60	1	6	2	3	45.35	2	737.75	0.00	0	113.43
NaLaMgW O ₆	2	7.82	6.42	1	6	4	3	45.35	2	737.75	0.00	0	102.29
Rb ₂ HfF ₆	1	6.14	4.90	1	4	2	-1	328.1 6	0	0.00	0.00	0	229.34
Rb ₂ KGaF ₆	1	8.81	3.83	1	3	8	1	48.39	-1	1681.0 0	328.1 6	5	215.26
Rb ₂ NaAlF ₆	1	8.31	3.88	1	3	8	1	52.87	-1	1681.0 0	328.1 6	5	215.74
Rb ₂ SiF ₆	1	8.45	3.45	1	4	8	-1	328.1 6	0	0.00	0.00	0	244.09
Rb_2ZrF_6	1	6.16	3.94	1	4	2	-1	328.1 6	0	0.00	0.00	0	233.76
Rb ₅ Nb ₃ OF ₁₈	3	15.53	3.76	2	5	20	-2	140.9 8	-1	1681.0 0	328.1 6	5	242.50
Sr ₂ CaWO ₆	2	5.77	5.94	2	6	4	2	2.37	-2	1313.9 0	140.9 8	4	93.63
Sr ₂ InSbO ₆	2	5.73	6.34	1	5	4	3	28.95	-2	1313.9 0	140.9 8	4	98.50
$Sr_2MgAl_{22}O$	2	5.58	3.77	4	3	2	2	0.00	-2	1313.9 0	140.9 8	4	101.35
Sr ₂ MgWO ₆	2	7.95	6.33	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	93.39
Sr ₂ MgWO ₆	2	7.95	6.33	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	93.39
Sr ₂ YTaO ₆	2	5.86	6.40	1	5	4	3	29.62	-2	1313.9 0	140.9 8	4	94.77
Sr ₂ ZnMoO ₆	2	7.95	5.71	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	92.73
Sr ₂ ZnWO ₆	2	7.93	6.94	1	6	8	2	0.00	-2	1313.9 0	140.9 8	4	93.39
Sr ₃ Al ₁₀ SiO ₂₀	2	11.18	3.71	2	3	6	4	134.0 7	-2	1313.9 0	140.9 8	4	99.56

	O/F/C) lat_para_	cryst_de	species_octahe	valence_	num_atomic	valen	ce_ EA_	valence	е_ IE /	EA_	num_VEPM	AVG_E
]	F b	ns	dra	1	_2	3	3	4	IL	4	4	А
$Sr_3Al_{10}SiO_{20}$	2	11.18	3.71	2	3	6	4	134.0 7	-2	1313.9 0	140.9 8	4	99.56
Sr ₃ LiSbO ₆	2	9.77	5.25	1	5	18	1	59.63	-2	1313.9 0	140.9 8	4	92.76
Sr ₃ LiTaO ₆	2	9.81	5.83	1	5	18	1	59.63	-2	1313.9 0	140.9 8	4	86.41
Sr ₃ NaSbO ₆	2	9.76	5.25	1	5	18	1	52.87	-2	1313.9 0	140.9 8	4	92.14
Sr ₄ Al ₁₄ O ₂₅	2	8.49	3.65	3	3	8	-2	140.9 8	0	0.00	0.00	0	95.99
SrAl ₁₂ O ₁₉	2	5.57	4.20	3	3	2	-2	140.9 8	0	0.00	0.00	0	99.51
SrGd ₂ Al ₂ O ₇	2	3.71	6.94	1	3	2	3	0.00	-2	1313.9 0	140.9 8	4	89.58
SrGe ₄ O ₉	2	11.34	4.91	2	4	3	-2	140.9 8	0	0.00	0.00	0	124.94
SrLa ₂ Sc ₂ O ₇	2	5.74	5.53	1	3	4	3	45.35	-2	1313.9 0	140.9 8	4	93.21
SrLaAlO ₄	2	3.76	5.91	1	3	2	3	45.35	-2	1313.9 0	140.9 8	4	89.78
SrLaGaO4	2	3.84	6.39	1	3	2	3	45.35	-2	1313.9 0	140.9 8	4	93.63
SrLaScO ₄	2	5.75	5.39	1	3	4	3	45.35	-2	1313.9 0	140.9 8	4	90.29
SrMgAl ₁₀ O ₁₇	2	5.63	3.54	2	3	2	2	0.00	-2	1313.9 0	140.9 8	4	97.20
Y ₃ Al ₅ O ₁₂	2	12.01	4.55	1	3	24	-2	140.9 8	0	0.00	0.00	0	99.47
YCa ₃ (AlO) ₃ (B O ₃) ₄	2	10.39	3.58	1	3	7	2	2.37	3	800.64	26.99	1	82.08

	n_estimators=66
XGB.r	learning_rate=0.09
	Booster =" gbtree"
	n_estimators=145
RF.r	max_depth=7
	max_features=4
	min_sample_leaf=1
	min_samples_split=4
	random_state=31
Lasso.r	Alpha=0.625370743
R.r	Alpha=3
	n_neighbors=3
KNN.r	Algorithm=" ball_tree"
	Weights=" distance"
	C=159.074647
SVM r	Epsilon=1.2138
S V 1VI.I	Gamma=0.01
	Kernel=" rbf"

Table S6. Hyper-parameter.

	exp(nm)	XGB.r	%diff.	Lasso.r	%diff.	R.r	%diff.
Ba ₂ LaNbO ₆	677	666	-1.62	696	+2.81	696	+2.81
Ba ₂ YNbO ₆	695	685	-1.44	672	-3.31	674	-3.02
Sr_2LaSbO_6	694	671	-3.31	664	-4.32	666	-4.03
Mg ₂ TiO ₄	657	695	+5.78	683	+3.96	684	+4.11
Ba_2YSbO_6	697	706	+1.29	707	+1.43	710	+1.87
Sr_2ScSbO_6	703	706	+0.43	698	-0.71	702	-0.14
Ca_2LaSbO_6	687	714	+3.93	689	+0.29	689	+0.29
CaYAlO ₄	713	709	-0.56	685	-3.93	686	-3.79
K_2NaGaF_6	630	639	+1.43	636	+0.95	635	+0.79
La ₂ MgGeO ₆	710	711	+0.14	703	-0.99	704	-0.85
Li2MgTi3O8	680	682	+0.29	677	-0.44	679	-0.15
$Na_2WO_2F_4$	620	667	+7.58	634	+2.26	630	+1.61
$Rb_2MoO_2F_4$	632	674	+6.65	637	+0.79	633	+0.16
$BaSiF_6$	632	641	+1.42	609	-3.64	607	-3.96
K_3SiF_7	633	640	+1.11	612	-3.32	609	-3.79
Ba_2GdSbO_6	687	681	-0.87	710	+3.35	711	+3.49
Sr ₃ NaSbO ₆	695	712	+2.45	699	+0.58	698	+0.43
$SrLaSc_2O_7$	704	708	+0.57	692	-1.70	692	-1.70
KNaWO ₂ F ₄	625	638	+2.08	655	+4.8	663	+6.08

Table S7. Predicted emission wavelength (nm) and the experimental (exp.) emission wavelength (nm).

	%diff	Neighbor	Dist.	Neighbor	Dist.	Neighbor	Dist.
CaYAlO ₄	-3.73	(NH ₄) ₂ TiF ₆	1.32	$BaSnF_6$	1.36	Rb ₂ NaAlF ₆	1.37
La ₂ MgGeO ₆	-2.19	$Na_3Li_3Sc_2F_{12}$	1.99	Rb ₂ HfF ₆	2.01	$K_2BaGe_8O_{18}$	2.15
Sr_2ScSbO_6	-1.91	La ₂ ZnTiO ₆	1.4	NaLaMgTeO ₆	1.43	$Na_3Li_3Sc_2F_{12}$	1.46
K_3SiF_7	-1.62	Na ₂ MgAl ₁₀ O ₁₇	2.38	BaGeF ₆	2.43	Ba ₂ GdNbO ₆	2.56
Ba_2YNbO_6	-1.01	$Na_3Li_3Sc_2F_{12}$	1.52	Rb_2HfF_6	1.52	K ₂ LiAlF ₆	1.78
$BaSiF_6$	-0.68	Na ₂ MgAl ₁₀ O ₁₇	2.44	LaTiSbO ₆	2.47	BaGeF ₆	2.5
Ba_2YSbO_6	-0.36	$Na_3Li_3Sc_2F_{12}$	0.63	Rb_2HfF_6	1.63	$K_2BaGe_8O_{18}$	1.8
$SrLa_2Sc_2O_7$	-0.24	Ba_2CaWO_6	0.93	$BaSnF_6$	0.93	KNaSiF ₆	1.19
Sr_2LaSbO_6	-0.19	NaLaMgTeO ₆	1.38	BaLaMgNbO ₆	1.4	Na _{1.57} Zn _{0.57} Al _{10.43} O ₁₇	1.41
$Rb_2MoO_2F_4$	0	$CsMoO_2F_3$	1.61	LaTiSbO ₆	2.47	BaGeF ₆	2.5
$Li_2MgTi_3O_8$	+0.24	Ba_2LaSbO_6	1.42	LaScO ₃	1.59	Ba_2MgWO_6	1.72
Ca_2LaSbO_6	+0.3	La ₂ ZnTiO ₆	0.8	LaScO ₃	0.94	NaLaMgTeO ₆	0.97
K_2NaGaF_6	+0.37	Rb_2ZrF_6	1.53	Cs_2HfF_6	1.54	Na ₃ AlF ₆	1.55
Sr_3NaSbO_6	+0.47	Rb_2HfF_6	0.81	$Na_3Li_3Sc_2F_{12}$	0.82	Li ₂ MgZrO ₄	1.58
Ba_2GdSbO_6	+1.06	K ₂ BaGe ₈ O ₁₈	1.77	Ba ₂ LuNbO ₆	1.78	$Na_3Li_3Sc_2F_{12}$	1.91
Mg_2TiO_4	+1.92	$Cs_2NaAl_3F_{12}$	2.46	Ca ₂ MgWO ₆	2.53	$CaMg_2Al_{16}O_{27}$	2.62
$Na_2WO_2F_4$	+1.95	$CsMoO_2F_3$	2.04	Ca ₂ InSbO ₆	3.03	Li ₅ La ₃ Nb ₂ O ₁₂	4.34
Ba ₂ LaNbO ₆	+3.88	$BaSnF_6$	1.02	Ba_2CaWO_6	1.07	$KNaSiF_6$	1.09
KNaWO ₂ F ₄	+6.46	Ba ₂ MgWO ₆	2.55	Rb ₂ NaAlF ₆	2.59	$BaTiF_6$	2.59

Table S8. Three nearest neighbors of different phosphors in the training set and their

Euclidean distances.