SUPPORTING INFORMATION

DISCOVERY OF NOVEL ACRAB-TOLC PUMP INHIBITOR BY MULTISTEP VIRTUAL SCREENING, SYNTHESIS AND BIOLOGICAL EVALUATION OF ASYMMETRIC IMIDAZOLE-4,5-DICARBOXAMIDE DERIVATIVES \dagger

Thien-Vy Phan, \ddagger ab Phuong Nguyen Hoai Huynh, \ddagger^{a} Vu-Thuy-Vy Nguyen, ${ }^{\text {ab }}$ Thanh-Phuc Nguyen, ${ }^{a}$ Thanh-Thao Vu, ${ }^{\text {a }}$ Cam-

[^0]
Contents

Table S1. The in-house database 1
Table S2. The result of screening in silico for the in-house database 32
Table S3. The interaction analysis of four compound's docking poses at distal pocket AcrB 34
Table S4. The number and occupancy of hydrogen bonds of A4 were calculated using the data of 100 ns simulations trajectory 34
Table S5. The relative potential of A1-4 to reduce the MIC of LEV and OXA against E. coli BW25113 34
Figure S2. (A) Protein carbon backbone RMSD; (B) Radius of gyration; (C) Solvent accessible surface areaand (D) Heavy-atom RMSD values of A4 calculated using the data of trajectories of 100 ns MD simulations36
Figure S3. Carbon alpha RMSF values of the AcrB in apoprotein (orange) and in complex A4-AcrB (blue)were calculated using the data of 100 ns trajectories of MD simulations36
Figure S4. Principal component analysis. (A) 2D projection of apoprotein (orange) and A4-AcrB (blue)calculated after 100 ns of MD trajectories. (B) EV1 collective motions in porcupine plot for apoprotein andA4-AcrB37
Figure S6. MM/GBSA binding free energy variation over time of the complex is calculated using the trajectories of 100 ns MD simulations 37
Figure S7. Effects of four compounds at $100 \mu \mathrm{M}$ on accumulation of the fluorescent DNA-binding dye H33342, an AcrAB efflux pump substrate, in E. coli BW25113 38
Figure S8. The A4's ADMET result generated from the ADMETlab2.0 server analyses 39
Experimental 40
The NMR Assignments, Infrared Spectroscopy and Mass Spectrum of synthetic compounds 49

Table S1. The in-house database
No. 2005 _NTTV_SP1

10.	2005_NTTV_SP2	
11.	2005_NTTV_SP3	
12.	2005_NTTV_SP4	
13.	2005_NTTV_SP5	
14.	2005_NTTV_SP8	
15.	2005_NTTV_SP9	
16.	2007_PNYV_N1	
17.	2007_PNYV_N2	
18.	2007_PNYV_N3	
19.	2007_PNYV_N4	

20.
21. 2007_PTPT_F13

22. 2007_PTPT_F14

23. 2007_PTPT_F15

24. 2007_PTPT_F2
25. 2007_PTPT_F3
26. 2007_PTPT_F4
27. 2007_PTPT_F6

28. 2007_PTPT_F7

29. 2007_PTPT_F8

30. 2007 _PTPT_F9
31.

66.
76.
86. 2013 _LAT_N11

122. 2014 _PHA_AP1

132.	2015_DON_AP2	
133.	2015_DON_AP3	
134.	2015_DON_AP4	
135.	2015_DON_AP5	
136.	2015_DON_AP6	
137.	2015_DON_AP7	
138.	2015_DON_AP8	
139.	2015_DON_AP9	
140.	2015_NGU_CS3	
141.	2015_NGU_FME	

142. 2015 _NGU_HCP2
143. 2015 _TRA_AB
144.

167.	2016_VOD_V23	
168.	2016_VOD_V3	
169.	2016_VOD_V4	
170.	2016_VOD_V5	
171.	2016_VOD_V6	
172.	2016_VOD_V7	
173.	2016_VOD_V8	
174.	2016_VOD_V9	
175.	2016_VUH_T100	

176. 2016 _VUH_T101
177. 2016 _VUH_T95

178. 2017 _NGU_C6
179. 2018 _LTAT_C4
180. 2018 218_NB_C4

181.
182. 2018 2018_VDD_D5

183.

275.

Table S2. The result of screening in silico for the in-house database

No.	Compound	Docking score (kJ.mol-1)
1.	2007_PTPT_F13	-26.00
2.	2013_LAT_N11	-25.17
3.	2016_VUH_T99	-24.61
4.	2013_NGU_G5	-24.04
5.	2016_VOD_V22	-23.61
6.	2014_NGU_A2C	-23.39
7.	2014_NGU_A23M	-23.20
8.	2014_NGU_A2P	-23.13
9.	2018_NHM_C3	-23.13
10.	2007_PTPT_F12	-23.01
11.	2015_TRA_A23M	-22.99
12.	2018_NHM_P3	-22.75
13.	A3	-22.73
14.	2014_NGU_A24M	-22.67
15.	2013_NGU_G3	-22.48
16.	2016_VOD_V9	-21.95
17.	2016_VUH_T48	-21.95

No.	Compound	Docking score (kJ.mol-1)
18.	2018_NHM_25	-21.94
19.	2018_NHM_C	-21.84
20.	2008_DNT_T10	-21.68
21.	2013_NGU_G9	-21.68
22.	2016_VUH_T98	-21.57
23.	2018_NHM_B2	-21.44
24.	2016_VUH_T96	-21.35
25.	2008_DNT_T9	-21.25
26.	2016_VOD_V13	-21.24
27.	2008_DNT_T1	-21.18
28.	2016_VOD_V10	-21.12
29.	2018_LTAT_C5	-21.07
30.	2018_NHM_C2	-20.97
31.	2014_NGU_A4N	-20.84
32.	2016_VUH_T45	-20.84
33.	2016_VUH_T95	-20.84
34.	2016_VOD_V8	-20.79

No.	Compound	Docking score (kJ.mol-1)
35.	A2	-20.77
36.	2015 TRA A3C	-20.73
37.	2016_VUH_T43	-20.64
38.	2014_NGU_A4C	-20.63
39.	2014_NGU_AB	-20.63
40.	2016_VUH_T42	-20.63
41.	2015_TRA_A2C	-20.52
42.	2013_NGU_FN4	-20.47
43.	A4	-20.35
44.	2018_NHM_P4	-20.31
45.	2016_VUH_T97	-20.30
46.	A1	-20.27
47.	2015_TRA_A4C	-20.26
48.	2014_PHA_AP8	-20.18
49.	2016_VUH_T78	-20.17
50.	2015_DON_AP9	-20.14
51.	2018_LTAT_C9	-20.11
52.	2005_NTTV_SP3	-20.09
53.	2015_DON_AP7	-20.08
54.	2015_DON_AP8	-20.05
55.	2009_NTTN_N11	-20.04
56.	2013_NGU_G8	-20.04
57.	2014_NGU_A34M	-19.94
58.	2016_VOD_V12	-19.92
59.	2016_VOD_V11	-19.83
60.	2018_VDD_DC	-19.76
61.	2008_DNT_T14	-19.71
62.	2005_NTTV_SP15	-19.70
63.	2007_PTPT_F15	-19.68
64.	HHP8	-19.63
65.	2018_NHM_B	-19.58
66.	2014_NGU_A4P	-19.57
67.	2005_NTTV_SP14	-19.45
68.	2014_PHA_AP5	-19.44
69.	2012_NHA_S43	-19.43
70.	2009_NTTN_N2	-19.39
71.	2013_NGU_G10	-19.38
72.	2015_TRA_AB	-19.37
73.	2018_VDD_EC	-19.33
74.	2014_PHA_AP6	-19.31
75.	2005_NTTV_SP5	-19.23
76.	2008_DNT_T7	-19.23
77.	2012_NHA_S42	-19.23
78.	2016_VUH_T76	-19.20
79.	2009_NTTN_N3	-19.13
80.	2008_DNT_T13	-19.10
81.	2015_DON_AP1	-19.06

No.	Compound	Docking score (kJ.mol-1)
82.	2018_NHM_CF	-19.05
83.	2008_DNT_T12	-19.03
84.	2018_LTAT_C6	-18.98
85.	2018_LTAT_C4	-18.96
86.	2018_LTAT_C8	-18.93
87.	2018_LTAT_C2	-18.90
88.	2014_NGU_A2F	-18.83
89.	2013_NGU_G6	-18.73
90.	C3.5	-18.73
91.	2016_VUH_T102	-18.62
92.	2016_VUH_T101	-18.45
93.	2016_VUH_T100	-18.43
94.	C3.4	-18.41
95.	C3.1	-18.34
96.	2015_TRA_A24M	-18.30
97.	2018_LTAT_C7	-18.25
98.	2015_NGU_FME	-18.13
99.	2009_NTTN_N12	-18.11
100.	2018_LTAT_C3	-17.94
101.	2018_LTAT_C1	-17.78
102.	2009_NTTN_N7	-17.64
103.	2013_LAT_F2	-17.60
104.	2013_NGU_FH3	-17.60
105.	2009_NTTN_N8	-17.57
106.	2017_NGU_C12	-17.51
107.	TD6MC	-17.51
108.	D6	-17.40
109.	C4.4	-17.39
110.	C3.2	-17.04
111.	2007_PTPT_F14	-16.97
112.	2008_DNT_T11	-16.94
113.	2013_NGU_G7	-16.89
114.	2007_PTPT_F11	-16.24
115.	2009_HKD_Genistein	-16.23
116.	C3.6	-16.20
117.	C4.1	-16.17
118.	2018_VDD_E6	-15.65
119.	2018_VDD_D6	-15.60
120.	2016_VOD_V23	-15.38
121.	2018_VDD_EA	-13.67
122.	D5	-13.43
123.	2018_VDD_E5	-13.13
124.	2018_VDD_DA	-13.02
125.	AH6M	-12.94
126.	2018_VDD_D5	-12.90
127.	AH4M	-11.93

Table S3. The interaction analysis of four compound's docking poses at distal pocket AcrB

No.	Residue	Type interaction	Frequency*(\%)
1	Phe 615	Surface contact	97.5
2	Phe 178	Surface contact	87.5
3	Ile 277	Surface contact	85.0
4	Gln 176	Surface contact	85.0
5	Gln 176	Hydrogen bond acceptor	72.5
6	Gly 179	Hydrogen bond donor	30.0
* Only interactions with a frequency greater than or equal to 30% are presented			

Table S4. The number and occupancy of hydrogen bonds of A4 were calculated using the data of 100 ns simulations trajectory

Hydrogen bonds				Arene interaction		Surface contact	
	nor Occupanc y		eptor Occupanc y	Residu e	Occupanc y	Residue	Occupanc y
Phe 628	237.77 \%	$\begin{aligned} & \hline \text { Phe } \\ & 628 \end{aligned}$	53.01 \%	Ser134	8.91 \%	Phe 628	77.79 \%
Ile 626	48.05 \%	Val 672	43.83 \%	Ile 626	6.94 \%	Ser 134	63.42 \%
Met 575	31.58 \%	Ser 134	42.92 \%	Met 573	2.87 \%	11 e 626	57.76\%
Met 573	30.23 \%	Gly 616	40.45 \%	Phe 617	2.27 \%	Met 573	48.18 \%
Ser 134	26.80 \%	Phe 617	24.10 \%	Phe 628	1.25 \%	Phe 617	11.86 \%
Phe 617	30.53 \%	Ser 134	16.19 \%			Val 672	9.17%
Phe 136	40.14 \%					Phe 615	7.33 \%
Phe 178	16.94 \%					Phe 666	3.60 \%
Gly 616	15.92 \%					Gly 616	2.38 \%
Tyr 327	15.16 \%					Leu 668	2.30 \%
Leu 668	14.61 \%					Met 575	1.60 \%
Phe 610	11.20 \%					Phe 178	1.24 \%

Table S5. The relative potential of A1-4 to reduce the MIC of LEV and OXA against E. coli BW25113

Figure S1. (A) RMSD value of the protein's carbon backbone; (B) Solvent accessible surface areas; (C) Radius of gyration of four complexes; (D) MM/GBSA binding free energy variation over time of four complexes are calculated using the trajectories of 20 ns MD

Figure S2. (A) Protein carbon backbone RMSD; (B) Radius of gyration; (C) Solvent accessible surface area and (D) Heavy-atom RMSD values of A4 calculated using the data of trajectories of 100 ns MD simulations

Figure S3. Carbon alpha RMSF values of the AcrB in apoprotein (orange) and in complex A4-AcrB (blue) were calculated using the data of 100 ns trajectories of MD simulations

Figure S4. Principal component analysis. (A) 2D projection of apoprotein (orange) and A4-AcrB (blue) calculated after 100 ns of MD trajectories. (B) EV1 collective motions in porcupine plot for apoprotein and A4-AcrB

Figure S6. MM/GBSA binding free energy variation over time of the complex is calculated using the trajectories of 100 ns MD simulations

Figure S7. Effects of four compounds at $100 \mu \mathrm{M}$ on accumulation of the fluorescent DNA-binding dye H 33342 , an AcrAB efflux pump substrate, in E. coli BW25113

Physicochemical Property		
Molecular Weight (MW)	416.020	©
Volume	357.159	©
Density	1.165	©
nHA	7	0
nHD	2	©
nRot	5	0
nRing	3	©
MaxRing	6	0
nHet	10	©
f Char	0	0
nRig	19	©
Flexibility	0.263	0
Stereo Centers	0	0
TPSA	87.320	0
logs	-5.107	0
$\log P$	3.230	0
$\log D$	3.139	-
Toxicity		
herg Blockers	--	- 0
H-HT	++	- 0
DILI	+++	- 0
AMES Toxicity	--	- 0
Rat Oral Acute Toxicity	+	- 0
FDAMDD	+	- 0
Skin Sensitization	--	- 0
Carcinogencity	+++	- 0
Eye Corrosion	--	- 0
Eye lrritation	---	- 0
Respiratory Toxicity	---	- 0
Environmental Toxicity		
Bioconcentration Factors	0.492	-
$1 G C_{50}$	2.715	0
$\mathrm{LC}_{50} \mathrm{FM}$	3.765	0
$L^{1} 50 \mathrm{DM}$	4.212	-
Tox21 Pathway		
NR-AR	---	- 0
NR-AR-LBD	---	- 0
NR-AhR	+++	- 0
NR-Aromatase	++	- 0
NR-ER	--	- 0
NR-ER-LBD	---	- 0
NR-PPAR-gamma	---	- 0
SR-ARE	+	- 0
SR-ATAD5	--	- 0
SR-HSE	--	- 0
SR-MMP	--	- 0
SR-p53	+	- 0
Toxicophore Rules		
Acute Toxicity Rule	0 alert(s)	©
Genotoxic Carcinogenicity Rule	1 alert(s)	Dial 0
NonGenotoxic Carcinogenicity Rule	0 alert(s)	-
Skin Sensitization Rule	4 alert(s)	Daxal 0
Aquatic Toxicity Rule	1 alert(s)	Daki 0
NonBiodegradable Rule	2 alert(s)	Dixl 0
SureChembl Rule	0 alert(s)	0
FAF-Drugs4 Rule	1 alert(s)	Didal 0

Figure S8. The A4's ADMET result generated from the ADMETlab2.0 server analyses

Experimental

Virtual screening

Pharmacophore model as a rapid virtual screening tool. For the virtual screening of molecular AcrAB-TolC inhibitors, the 2D - structure compounds were generated by MOE 2015.10. ${ }^{1}$ Firstly, the compounds were energy minimized by the Energy Minimize tool in MOE (Forcefield: MMFF94, Gradient: 0.0001 kcal.mol-1). Secondly, the Pharmacophore Search tool was used to apply the pharmacophore query RHHa. The query included one aromatic ring, two hydrophobic groups and one receiving hydrogen bond group. ${ }^{2}$ The compounds which satisfied the query have been subjected to molecular docking.

Virtual screening by molecular docking model. The compounds were prepared for the structures using Sybyl-X 2.0^{3} prior to docking. The compounds were subjected to two iterations of energy minimization (Method: Conj Grad; Termination: Energy Change $0.0001 \mathrm{kcal} /\left(\mathrm{mol}{ }^{*} \mathrm{~A}\right)$; Max Iteration: 10,000; Charges: Gasteriger-Huckel). ${ }^{4}$ By using the Simulated Annealing tool, compounds were simulated molecular dynamics to overcome the energy barrier between two energy minimization phases. LeadIT ${ }^{5}$ docked prepared compounds to the protein, scored, and ranked. The docking process was carried out with the following parameters: 10 poses were retained, 1000 repetitions were allowed, and 200 defragments were performed. ${ }^{4}$ The data were analyzed and assessed by MOE, which validate the findings using the docking score, summarize ligand-protein interactions using PLIF, and identify the primary location of bonding using Surface Map and Ligand Interaction. 4,6
Molecular dynamics simulations. MD simulations were performed using GROMACS 2020.6 software. ${ }^{7,8}$ Throughout MD simulations, AcrB's chain B (1033 residues) was the only selection. The protein's topology was generated by GROMACS using the CHARMM-27 force field. The optimal docking conformation of the ligand was recorded as.mol2. The protein topology was combined with the topology of the ligand which was built using the SwissParam online tool (https://www.swissparam.ch/). ${ }^{9}$ The box edges of simulated dodecahedron box and complex were distanced by $10 \AA$. Water served as the system's solvent in the TIP3P model, which added $\mathrm{Na}+$ or Cl - ions afterward to neutralize electricity (salt concentration was 0.15 M). With a maximum force of $10 \mathrm{~kJ} . \mathrm{mol}-1$ and the steepest descent minimization, the created system's energy was minimized for 100 ps . The system was conduct to equilibrium by simulating an NVT for 100 ps to 300 K using a variable rate thermostat ${ }^{10}$ and then equilibrating an NPT for 100 ps to 1 bar using a Parrinello-Rahman barostat. ${ }^{11}$ The MD simulation was carried out using the Verlet method at 300 K and 1 bar of pressure. The LINCS method was used to reach the hydrogen bond limit. ${ }^{12}$ Additionally, the non-bonding interactions were cut at $12 \AA$, and the long-range electrostatic interactions were estimated using the Mesh Ewald technique. ${ }^{13}$ The MD trajectories were recorded every 0.01 ns. Using GROMACS tools, structural data from MD simulations was retrieved and examined. The root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) were calculated using the tools $g_{-} r m s$ and $g_{-} r m s f$. To investigate the dynamical stability
of simulated systems, the radius of gyration (R_{g}) was calculated using g_gyrate tool. Moreover, g_{-}sasa was used to assess the solvent accessible surface area (SASA) for the proteins.

Interaction analysis. To determine the interaction between the ligands and the residues, the occupancy of hydrogen bond formation of the ligands was investigated using VMD software. ${ }^{14}$ Basic geometrical requirements specified a hydrogen bond as occurring when the angle between the hydrogen donor (D) and acceptor (A) atoms is more than 120° and the distance between them is less than $3.5 \AA .{ }^{13}$

Essential dynamic. Essential dynamic, also known as Principal component analysis (PCA) can display the apoprotein and complex's collective atomic motion, by using the g_covar and g_anaeig packages of GROMACS. ${ }^{7,15}$ Porcupine plots were created using PyMOL to visualize the movements of the first eigenvector derived from the PCA analysis. ${ }^{16}$

Binding free energy calculation. Based on the single trajectory of GROMACS, calculations were carried out using the $g m x$ _MMPBSA package. ${ }^{17}$ The parameters were set to $1.0 \mathrm{~K}, 298 \mathrm{~K}$, and 0.15 M for the temperature, solute dielectric constant, and salt concentration, respectively. ${ }^{13}$

Drug likeness and pharmacokinetic properties. ADMETlab2.0 webservers were used to predict the pharmacokinetic and toxicity properties of hit compound. ${ }^{18}$ The SMILES of the compound was uploaded to calculate absorption, distribution, metabolism, excretion, and toxicity properties using default parameters.

Chemical synthesis

General chemistry information. Room temperature is considered $27-30{ }^{\circ} \mathrm{C}$. Reaction conditions are described in detail in the sections below. All commercially reagents and solvents from suppliers were used without further purification.

TLC and column chromatography: Thin-layer chromatography (TLC) was perform using TLC Silica gel $60 \mathrm{GF}_{254}$ precoated aluminium plates and the developed plates were visualized using Vilber Lourmat UV lamp. Normal phase flash column chromatography was run using silica gel 40-63 microns. The desired fractions from column chromatography (confirmed by TLC) were collected and concentrated under vaccuum to afford the product.

NMR: All NMR data were collected at ambient temperature. All NMR solvents were purchased from Cambridge Isotoped. NMR spectra were processed with MestReNova software. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were obtained on Bruker 400, 500 MHz spectrometers. Proton chemical shifts were reported in ppm. Proton data were reported as chemical shifts, multiplicity (singlet (s), triplet (t), multiplet (m), , ...), coupling constants [Hz] and integration. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained on Bruker 100, 150 MHz spectrometer. Carbon chemical shifts were reported in ppm.
Infrared Spectroscopy: Infrared spectra were recorded on FTIR 8201 PC Shimadzu spectrometer, and select vmax were reported in cm^{-1}.

Mass Spectrometry: Mass spectrometry was conducted by Shimadzu LCMS 8040, using ESI. The HRMS was conducted by Water Xevo G2-XS Qtof.

Synthesis of 2-methyl-imidazole-4,5-dicarboxylic acid (2). To a 250 mL round bottom flask equipped with a magnetic stir bar, open to air, was added 2-methylbenzimidazole ($6.61 \mathrm{~g}, 50 \mathrm{mmol}$), followed by concentrated sulfuric acid (50 mL). The mixture was heated to $70-80^{\circ} \mathrm{C}$ and stirred until dissolved. Added last was hydrogen peroxide $30 \%(70 \mathrm{~mL}, 895 \mathrm{mmol})$. The reaction was heated to $110-120^{\circ} \mathrm{C}$ in 2 hours. The reaction mixture was cooled to room temperature and added cold water until pH about 4 . The precipitation was formed and filtered under vaccuum, washed several times with water to afford the pure product.

Synthesis of 3,8-dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6-dicarbonyl dichloride (3). To a 100 mL round bottom flask equipped with a magnetic stir bar, was added (2) ($2.17 \mathrm{~g}, 12.8 \mathrm{mmol}$), 20 mL hexane, stirred well, followed by thionyl chloride ($5.6 \mathrm{~mL}, 76.8 \mathrm{mmol}$), 0.5 mL DMF. The mixture was heated to $85^{\circ} \mathrm{C}$ with condenser in 16 hours. The precipitate formed in the reaction was filtered and then put back to another round bottom flask. Added 20 mL cyclohexane and heated to $85^{\circ} \mathrm{C}$ in 30 mins to remove the excess thionyl chloride. The precipitate was then filtered under vaccuum and washed with 10 mL cyclohexane and dried completely. This compound is sensitive to air and humidity so that it was runned some in house characterization such as melting point and IR spectroscopy.

Synthesis of $\quad N^{1}, N^{6}$-bis(2,4,5-trichlorophenyl)-3,8-dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6-dicarboxamide (4). To a 50 mL round botton flask equipped with a magnetic stir bar, was added (3) ($0.68 \mathrm{~g}, 2.0 \mathrm{mmol}$), 12 mL DCM, stirred well and cooled at $0^{\circ} \mathrm{C} . \mathrm{N}, \mathrm{N}$-dimethylaniline ($0.26 \mathrm{~mL}, 4.2$ mmol) and aniline derivatives (4.2 mmol) were added. After 10 mins , the mixture was heated to room temperature and kept stirring in 3-16 hours. The precipitate formed in the mixture was filtered under vaccuum, washed with 20 mL of DCM, 40 mL of cool water, 40 mL of acetone and dried completely. Using this method, we synthesized compounds 4a, 4b, 4c, 4d.

Synthesis of \mathbf{N}-(2,4,5-trichlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (A1-4). To a 50 mL round bottom flask equipped with a magnetic stir bar, was added (4a-d) (1.0 mmol), 12 mL chloroform, stirred well. Morpholine ($0.52 \mathrm{~mL}, 6.0 \mathrm{mmol}$) was then added. The mixture was stirred at room temperature in 16 hours. The excess of morpholine and chloroform after the reaction was removed by evaporation. The precipitate formed was washed with water to get the crude product. The crude product was purified by column chromatography over silica gel of mesh size 40-63 microns using an eluent mixture of chloroform - ethylacetate (1:1, v/v). Using this method, we synthezied compound A1, A2, A3, A4.

Analytical Characterization Data

2-Methyl-imidazole-4,5-dicarboxylic acid (2). Obtained as pale yellow solid; Yield 79,5\% (6.76g); mp = 255$256{ }^{\circ} \mathrm{C}$; IR (cm^{-1}): 3531, 1379; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}): 159.80,146.28,128.34,11.68, \mathrm{MS}-E S I: \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}=170.03$ (Calcd.), $\mathrm{m} / \mathrm{z}=168.75[\mathrm{M}-\mathrm{H}]^{-}$ (found).

3,8-Dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d] pyrazine-1,6-dicarbonyl dichloride (3). Obtained as pale brown solid; Yield $83.3 \%(1.82 \mathrm{~g}) ; \mathrm{mp}>300^{\circ} \mathrm{C}$; IR (cm^{-1}): 1757, 1344, 758.
$\boldsymbol{N}^{1}, \boldsymbol{N}^{6}$-diphenyl-3,8-dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6-dicarboxamide (4a). Obtained as yellow solid; Yield $77.0 \%(0.7 \mathrm{~g}) ; \mathbf{m p}=250-251^{\circ} \mathrm{C}$, $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3199,1681,1255$.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{6}$-bis(2-chlorophenyl)-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6-dicarboxamide
(4b). Obtained as yellow solid; Yield $86.7 \%(0.91 \mathrm{~g}) ; \mathbf{m p}=244-246^{\circ} \mathrm{C}$, IR (cm^{-1}): 3334, 1693, 1276.
$\boldsymbol{N}^{1}, \boldsymbol{N}^{6}$-bis(3,4-dichlorophenyl)-3,8-dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6dicarboxamide (4c). Obtained as yellow solid; Yield 87.0% (1.03 g); $\mathbf{m p}=244-245^{\circ} \mathrm{C}$, $\operatorname{IR}\left(\mathrm{cm}^{-1}\right.$): 3251,1674 , 1286.
N^{1}, N^{6}-bis(2,4,5-trichlorophenyl)-3,8-dimethyl-5,10-dioxo-5H,10H-diimidazo[1,5-a:1',5'-d]pyrazine-1,6dicarboxamide (4d). Obtained as yellow solid; Yield $72.6 \%(0.96 \mathrm{~g}) ; \mathbf{m p}=255-256{ }^{\circ} \mathrm{C}$, $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: 3265, 1687, 1250.

N-phenyl-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (A1). Obtained as white solid; Yield $19.1 \%(0.12 \mathrm{~g}) ; \mathrm{mp}=265-267^{\circ} \mathrm{C}$, $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3259,1664,1296 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ (ppm): $13.07(\mathrm{~s}, 0.8 \mathrm{H}), 12.82(\mathrm{~s}, 0.2 \mathrm{H}), 12.47(\mathrm{~s}, 0.8 \mathrm{H}), 9.81(\mathrm{~s}, 0.2 \mathrm{H}), 7.79(\mathrm{~s}, 0.4 \mathrm{H}), 7.63(\mathrm{~d}, 1.6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz})$, $7.37(\mathrm{t}, 1.6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.30(\mathrm{~s}, 0.4 \mathrm{H}), 7.11(\mathrm{t}, 0.8 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.06(\mathrm{~s}, 0.2 \mathrm{H}), 4.17-3.40(\mathrm{~m}, 8 \mathrm{H}), 2.34(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}-$ NMR (150 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 164.14,156.50,145.00,138.47,133.10,129.72,129.04,123.68$, 119.17, 66.38, 66.08, 47.95, 43.10, 13.48; HRMS-ESI: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}=314.13789$ (Calcd.), $\mathrm{m} / \mathrm{z}=315.14822$ $[\mathrm{M}+\mathrm{H}]^{+}$(found).
\mathbf{N}-(2-chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (A2). Obtained as white solid; Yield $24.4 \%(0.17 \mathrm{~g}) ; \mathbf{m p}=223-225^{\circ} \mathrm{C}$, $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3242,1653,1285 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $12.26(\mathrm{~s}, 1 \mathrm{H}), 11.50(\mathrm{~s}, 1 \mathrm{H}), 8.12\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right), 7.44\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right)$, $7.27\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right), 7.12\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right), 4.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 3.84-3.78(\mathrm{~m}$, $4 \mathrm{H}), 3.75(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 163.69,160.32,159.50$, $157.10,145.52,144.96,134.91,134.60,133.95,130.83,129.58,129.27,128.78,127.87,127.49,127.03$, 125.63, 124.81, 124.31, 124.04, 122.82, 122.43, 66.48, 66.16, 66.07, 65.82, 47.80, 46.90, 42.96, 41.93, 13.50; HRMS-ESI: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}=348.09892$ (Calcd.), $\mathrm{m} / \mathrm{z}=371.08995$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$(found) for ${ }^{35} \mathrm{Cl}$ isotope and $\mathrm{m} / \mathrm{z}=373.08748[\mathrm{M}+\mathrm{Na}]^{+}$(found) for ${ }^{37} \mathrm{Cl}$ isotope, the ratio at 3:1.
\boldsymbol{N}-(3,4-dichlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (A3). Obtained as white solid; Yield $31.3 \%(0.24 \mathrm{~g}) ; \mathbf{m p}=261-263^{\circ} \mathrm{C}$, IR (cm^{-1}): 3257, 1678, 1269; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}): 13.09(\mathrm{~s}, 1 \mathrm{H}), 12.85(\mathrm{~s}, 0.7 \mathrm{H}), 10.26(\mathrm{~s}, 0.3 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 4.18-3.63(\mathrm{~m}, 8 \mathrm{H})$, 2.35 (s, 3H); ${ }^{13} \mathrm{C}-$ NMR 164.03, 160.61, 160.54, 156.83, 145.50, 144.64, 139.05, 138.47, 133.65, 131.33, 131.27, 131.02, 130.72, 130.34, 129.30, 127.42, 125.19, 124.64, 121.22, 120.39, 120.05, 119.39, 66.40, 66.10, 65.96, 65.93, 48.05, 42.26, 13.54, 13.45; HRMS-ESI: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}=382.05995$ (Calcd.), $\mathrm{m} / \mathrm{z}=$ $383.06926[\mathrm{M}+\mathrm{H}]^{+}$(found) for two ${ }^{35} \mathrm{Cl}$ isotopes, $\mathrm{m} / \mathrm{z}=385.06653[\mathrm{M}+\mathrm{H}]^{+}$(found) for one ${ }^{35} \mathrm{Cl}$ isotope and one ${ }^{37} \mathrm{Cl}$ isotope, and $\mathrm{m} / \mathrm{z}=387.06412[\mathrm{M}+\mathrm{H}]^{+}$(found) for two ${ }^{37} \mathrm{Cl}$ isotopes. $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.61(\mathrm{~s}, 1 \mathrm{H}), 11.12(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 3.84(\mathrm{~m}$, $4 \mathrm{H}), 3.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 163.42,157.26,145.87$, $135.24,134.32,130.54,129.83,128.45,126.24,123.67,123.89,66.40,66.10,47.75,42.99,13.51$, HRMSESI: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}=416.02097$ (Calcd.), $\mathrm{m} / \mathrm{z}=417.02747[\mathrm{M}+\mathrm{H}]^{+}$(found).

The compounds A1-A4 were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in $\mathrm{DMSO}-d_{6}, \mathrm{CDCl}_{3}$ solvents. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra measured in DMSO- d_{6} solvent, the highest chemical shift peak was the H atom of NH in the imidazole ring while in the CDCl_{3}, the highest one was the H atom in the amide bond (Crystal growth \& design. 2006;6(9):2047-2052. doi:10.1021/cg060057i; Organic letters. 2005;7(1):135-138. doi:10.1021/ol047812a). According to the study of Yasuda N. et al. about the formation of intramolecular hydrogen bonds of imidazole-4-carboxylic acid ester-5carboxamide derivatives, compound 1 and 2 were isomers but only compound $\mathbf{1}$ was shown to have an intramolecular hydrogen bond while compound 2 was not (Journal of heterocyclic chemistry. 1987;24(2):303-307. doi:10.1002/jhet.5570240202P).

compound 1

compound 2

This interaction was shown by the chemical shift of H atom in the NH amide bond. If this H atom (of NH amide) participated in intramolecular hydrogen bonding, the chemical shift of the H atom would move to the lower field region. On the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}$ in CDCl_{3} solvent, the H peak of NH amide had the higher chemical shift of 10.67 ppm compared with a similar H peak in compound 2 shown in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in the same solvent having the chemical shift of 8.09 ppm . This difference was used by Yasuda N. to conclude that compound 1 formed intramolecular hydrogen bonds but compound 2 did not (Journal of heterocyclic chemistry. 1987;24(2):303307. doi:10.1002/jhet.5570240202P). The intramolecular hydrogen bond in compound $\mathbf{1}$ was formed by H of the NH amide with the O atom in the $\mathrm{C}=\mathrm{O}$ of the ester group. In addition, according to the study by Baures et al. on the intramolecular hydrogen bonding of imidazole-4,5-dicarboxamide derivatives, the H peak of the NH amide with aniline derivatives in CDCl_{3} when participating in intramolecular hydrogen bonding had the chemical shift more than 13 ppm while the H peak when not in intramolecular hydrogen bonding had the chemical shift of 9.36-9.79 ppm (compound 3 and 4) (Organic letters. 2005;7(1):135-138. doi:10.1021/ol047812a).

compound 3

compound 4

It was found that in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in CDCl_{3} of compound $\mathbf{A 2}$ and $\mathbf{A 4}$, the chemical shift of NH amide moved to the lower field than the NH amide in compound $\mathbf{1}$ and the NH amide of aniline derivatives in compound $\mathbf{3}$ and $\mathbf{4}$ when not participating in intramolecular hydrogen bonding. It can be concluded that compound $\mathbf{A 2}$ and $\mathbf{A 4}$ in CDCl_{3} the NH of the amide group was in a state of forming intramolecular hydrogen bonding. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in DMSO- d_{6} solvent of compound $\mathbf{A 1}$ and $\mathbf{A 3}$, the NH amide peak was splitted into 2 peaks and the one at lower field indicated that the H atom was in the state of intramolecular hydrogen bonding. The intramolecular hydrogen bonding in these compounds may form from the NH amide of aniline derivatives with O atom in amide bond with morpholine, which was similar to the reported imidazole-4,5-dicarboxamide derivatives (Journal of medicinal chemistry. 2005;48(19):5955-5965.doi:10.1021/jm050160r). For the compound A3, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in DMSO- d_{6} recorded the separation of peak H atom of NH amide at the ratio 7:3 in which the higher proportion when the H atom of the NH amide was in the state of intramolecular hydrogen bonding indicated by the lower field peak. Similarly, the compound A1, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in DMSO- d_{6} recorded the separation of peak H atom of NH amide at the ratio 8:2.

Structural elucidation of A1:
Compound $\mathbf{A 1}$ was obtained as white solid and its molecular formula was established as $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ through the m / z $315.1482[\mathrm{M}+\mathrm{H}]^{+}$(found), 315.1457 (Calcd.) in the HRES-EMS spectrum. The combination of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and HSQC spectra of A1 showed the presence of 16 main carbon signals. Based on the HSQC spectrum, all of proton signals in A1 were determined including five aromatic protons ($\mathrm{H} 17-\mathrm{H} 21$); four $-\mathrm{CH}_{2}$ groups ($\mathrm{H} 9-\mathrm{H} 10, \mathrm{H} 12-\mathrm{H} 13$); and one methyl group (H6) together with two proton signals of -NH group (H1 and H15). In the HMBC analysis, the correlation of proton and carbon were showed to confirm the structure of A1 (Figure S5).

A1

Figure S5. HMBC correlations observed for compounds A1 and A3

Calculation of forming energy of intrahydrogen bonding and non-intrahydrogen bonding isomers of compounds A1, A3 in DMSO ${ }^{19}$

The MOPAC software was used with the input .mop files (The structures of compounds were prepared by Chemdraw, transfered to 3D structure by Chem3D, optimized the energy by Chem3D using MM2 method. The files were saved as .mop files). The calculation was carried by MOPAC with some properties: gnorm = 0.01, eps = 46.7, precise pm7 1scf. The results were reported in the table belowed.

Calculation	intrahydrogen bonding A1	non- intrahydrogen bonding A1	intrahydrogen bonding A3	non- intrahydrogen bonding A3
Heat of formation (kcal/mol)	13.71441	23.93299	-4.90964	5.04046
Van Der Waals area (square angstrom)	317.86	318.28	354.75	354.99
Dielectric energy (ev)	-1.00950	-1.73167	-1.01825	-1.81587
Ionization potential (ev)	9.138265	9.150611	9.288913	9.200537

Homo lumo energies (ev)	$-9.318 ;-1.001$	$-9.151 ;-1.038$	$-9.289 ;-1.139$	$-9.201 ;-1.163$
Cosmo area (square angstrom)	317.86	318.28	354.75	354.99
Cosmo volume (cubic angstrom)	350.96	351.39	396.07	396.92

Calculation of the percentage of intrahydrogen bonding and non-intrahydrogen bonding isomers of compounds A1 and A3 in DMSO at room temperature.

The heat of formation $\Delta \mathrm{H}^{\circ}$ of intrahydrogen bonding and non-intrahydrogen bonding isomers predicted by MOPAC software were used to calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{r} \times n}$ of this equilibrium:

Intrahydrogen bonding isomer \Leftrightarrow non-intrahydrogen bonding isomer
Using the van't Hoff equation ${ }^{20}$
$\ln \frac{K_{1}}{K_{0}}=-\frac{\Delta H_{r x n}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{0}}\right)$
to calculate the constants of the equilibrium at 298 K , the experimental constants at 303.1 K (temperature at which the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was taken).

For compound A 1 : $\mathrm{K}_{303.1 \mathrm{~K}}=1 / 4, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=42754.54 \mathrm{~J} / \mathrm{mol}=>\mathrm{K}_{298.0 \mathrm{~K}}=0.19=>$ ratio of intrahydrogen bonding isomer of $\mathrm{A} 1 /$ non-intrahydrogen bonding isomer of $\mathrm{A} 1=0.84 / 0.16$.

For compound $A 3$: $\mathrm{K}_{303.1 \mathrm{~K}}=3 / 7, \Delta \mathrm{H}_{\mathrm{rxn}}=41631.2 \mathrm{~J} / \mathrm{mol}=>\mathrm{K}_{298.0 \mathrm{~K}}=0.32 \Rightarrow$ ratio of intrahydrogen bonding isomer of $A 3 /$ non-intrahydrogen bonding isomer of $A 3=0.76 / 0.24$.

Biological assay

Strains and reagents. The following strains were obtained from the Keio collection ${ }^{21}$: E. coli BW25113 (WT), JW0451 ($\Delta a c r B:: k a n$), and JW0453 ($\Delta a c r R: k a n$). The following reagents were purchased from Sigma-Aldrich (St. Louis, MO): bisBenzimide Hoechst 33342 trihydrochloride (H33342), Levofloxacin (LEV) and Oxacillin (OXA). NMP was purchased from Alfa Aesar by Thermo Fisher Scientific (USA). Luria-Bertani (LB) broth and phosphate-buffered saline (PBS) were purchased from Himedia (India).

Antibacterial activity assays. In general, the CLSI protocol M7-A7's description of the broth microdilution method was used to determine the Minimum Inhibitory Concentration (MIC) of antibacterial agents. Stock cultures of bacteria were sub-cultured onto Mueller Hinton Agar (MHA) plates and incubated at $37{ }^{\circ} \mathrm{C}$ for an entire night. On the second day, three to five distinct bacterial colonies with comparable morphology were inoculated into sterile Mueller Hinton broth (MHB), and bacterial suspensions were adjusted to 0.5 McFarland (about 1-2 $\times 10^{8} \mathrm{CFU} / \mathrm{ml}$). In a 96-well round-bottom microtiter plate, the assay consisted of one column of broth sterility control, one column of growth control, one vertical row of antibiotic control, and finally one column of each test sample. Serial 2-fold dilutions of test compounds were made in dimethyl
sulfoxide (DMSO) at concentrations 40-fold higher than the final concentration; the diluted compounds were added to the assay plates, and 100μ l of the bacterial culture was added to each well. The final concentration of DMSO in each assay was 2.5\%. A final concentration of an EPI ranging from 50 to $200 \mu \mathrm{M}$ was used in the MIC tests as specified. The geometric mean was computed after MIC assays were carried out in triplicate. To illustrate the inhibitory effects of extracts or compounds, the resazurin-based turbidometric test was used. ${ }^{22,23}$ After overnight incubation at $37{ }^{\circ} \mathrm{C}$, resazurin ($5 \mu \mathrm{l} ; 6.75 \mathrm{mg} . \mathrm{ml}-1$) was applied to all wells and incubated at $37^{\circ} \mathrm{C}$ for 4 hours. ${ }^{22}$ Color variations were observed and recorded. The MIC was defined as the lowest concentration at which the color did not change. Using the same modifications as for the MIC tests mentioned above, checkerboard MIC assays with an EPI and an antibacterial agent were carried out essentially as previously described. ${ }^{22,23}$

H33342 accumulation assay. Essentially as described previously, the H33342 accumulation assay was utilized to assess how EPIs affected the activity of the AcrAB-ToIC efflux pump in bacteria. ${ }^{24,25}$ Bacteria were cultured overnight in LB with aeration at $37^{\circ} \mathrm{C}$ before being used to inoculate fresh cultures (1:100 dilution), which were then grown in LB with aeration until an optical density at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ of 0.8 to 1.0 was attained. A volume of phosphate-buffered saline (PBS) containing 22 mM glucose (PBS+G) comparable to the original volume of the culture was used to wash the cell pellet after bacterial cells were retrieved by centrifugation. The cell pellets were then resuspended in PBS+G after centrifugation, and the OD_{600} of each suspension was adjusted to 0.35 . 175μ laliquots were added to the wells of a 96 -well assay plate (flat-bottom black plate, no. 3515; Costar, Corning, NY). For each of the conditions examined, three assay wells (one column of wells) were added with 5μ l of test chemicals dissolved in DMSO. In all experiments, the final DMSO concentration was $2.5 \% .20 \mu \mathrm{l}$ of a solution of $25 \mu \mathrm{M} \mathrm{H} 33342$ in PBS+G was added to each test well after the assay plates had been incubated at $37^{\circ} \mathrm{C}$ for 15 min , yielding a final dye concentration of $2.5 \mu \mathrm{M}$. Using a Victor NivoTM Multimode Plate Reader, the fluorescence of each well was measured at room temperature every five minutes for thirty minutes using excitation and emission filters of 355 nm and 460 nm , respectively (PerkinElmer, Waltham, MA). Microsoft Excel was used to obtain the average values and standard deviations for the three replicates for each condition.

The NMR Assignments, Infrared Spectroscopy and Mass Spectrum of synthetic compounds

IR spectrum of compound 2

Mass spectrum of compound 2

145DA

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2

${ }^{13}$ C-NMR spectrum of compound 2

IR spectrum of compound 3

IR spectrum of compound 4a

IR spectrum of compound 4b

IR spectrum of compound 4c

IR spectrum of compound 4d

IR spectrum of compound A1

Mass spectrum of compound A1

${ }^{1} \mathrm{H}$-NMR of compound A1

${ }^{13} \mathrm{C}$-NMR of compound A1

IR spectrum of compound A2

Mass spectrum of compound A2

${ }^{1} \mathrm{H}$-NMR spectrum of compound A2

${ }^{13} \mathrm{C}$-NMR spectrum of compound A2

IR spectrum of compound A3

Item name: Sample 1 Item description:

Retention time [min]

Mass spectrum of compound A3

${ }^{1} \mathrm{H}$-NMR of compound A3

${ }^{13} \mathrm{C}$-NMR of compound A3

IR spectrum of compound A4

Item name: B7
Channel name: Low energy : Time $7.5793+/-0.1007$ minutes
Item description:

Mass spectrum of compound A4

${ }^{1} \mathrm{H}$-NMR of compound A4

${ }^{13} \mathrm{C}$-NMR of compound A4

Author contributions

Thien-Vy Phan, MSC Pharm (Data curation: Equal; Formal analysis: Equal; Investigation: Lead; Validation: Equal; Visualization: Equal; Writing - original draft: Equal; Writing - review \& editing: Equal); Phuong Nguyen Hoai Huynh, MSC Pharm (Data curation: Supporting; Formal analysis: Supporting; Investigation: Lead; Software: Supporting; Visualization: Equal; Writing - original draft: Supporting; Writing - review \& editing: Supporting); Vu-Thuy-Vy Nguyen, Pharm (Data curation: Supporting; Formal analysis: Supporting; Investigation: Supporting; Software: Supporting; Visualization: Supporting); Thanh-Phuc Nguyen, Pharm (Formal analysis: Equal; Investigation: Supporting; Writing original draft: Supporting); Thanh-Thao Vu, PhD Pharm (Data curation: Supporting; Methodology: Equal; Project administration: Supporting; Validation: Equal; Writing - original draft: Supporting); Cam-Van Thi Vo, PhD Pharm (Formal analysis: Supporting; Project administration: Supporting; Resources: Equal; Validation: Supporting; Writing original draft: Supporting); Minh-Tri Le, PhD Pharm (Funding acquisition: Supporting; Investigation: Supporting; Project administration: Supporting; Resources: Supporting); Bao Gia Dang Nguyen, BSC (Data curation: Supporting; Formal analysis: Supporting; Investigation: Supporting; Writing - original draft: Supporting); Phuong Truong, PhD Pharm (Conceptualization: Equal; Funding acquisition: Supporting; Methodology: Equal; Supervision: Equal; Validation: Supporting; Writing - original draft: Supporting); Khac-Minh Thai, PhD Pharm (Conceptualization: Lead; Funding acquisition: Lead; Methodology: Lead; Project administration: Lead; Resources: Lead; Software: Lead; Supervision: Lead; Visualization: Equal; Writing - original draft: Lead; Writing - review \& editing: Lead).

References

1. Molecular operating environment (Version 2015.10), Chemical Computing Group ULC, Montreal, QC, Canada, 2016.
2. T.-V. Phan, V.-T.-V. Nguyen, C.-H.-H. Nguyen, T.-T. Vu, T.-D. Tran, M.-T. Le, D.-T. T. Trinh, V.-H. Tran and K.M. Thai, Journal of Biomolecular Structure and Dynamics, 2023, 1-18.
3. Sybyl-X (Version 2.0), Certara, St. Louis, USA, 2011.
4. T.-D. Ngo, T.-D. Tran, M.-T. Le and K.-M. Thai, Molecular diversity, 2016, 20, 945-961.
5. LeadIT (Version 2.0.2), BioSolvelT GmbH, Nordrhein-westfalen, Germany, 2012.
6. M.-T. Le, T. T. Mai, P. Huynh, T.-D. Tran, K.-M. Thai and Q.-T. Nguyen, SAR and QSAR in Environmental Research, 2020, 31, 883-904.
7. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, SoftwareX, 2015, 1, 19-25.
8. Lindahl, Abraham, Hess, van der Spoel, GROMACS (Version 2020.6), Zenodo, Genève, Switzerland, 2021.
9. V. Zoete, M. A. Cuendet, A. Grosdidier and O. Michielin, Journal of computational chemistry, 2011, 32, 2359-2368.
10. G. Bussi, D. Donadio and M. Parrinello, The Journal of chemical physics, 2007, 126, 014101.
11. M. Parrinello and A. Rahman, Journal of Applied physics, 1981, 52, 7182-7190.
12. B. Hess, H. Bekker, H. J. Berendsen and J. G. Fraaije, Journal of computational chemistry, 1997, 18, 14631472.
13. T. T. Mai, P. G. Nguyen, M.-T. Le, T.-D. Tran, P. N. H. Huynh, D.-T. T. Trinh, Q.-T. Nguyen and K.-M. Thai, in Mol Divers, 2022, DOI: 10.1007/s11030-021-10359-4, pp. 1-20.
14. W. Humphrey, A. Dalke and K. Schulten, Journal of molecular graphics, 1996, 14, 33-38.
15. C. C. David and D. J. Jacobs, in Protein dynamics, Springer, 2014, DOI: 10.1007/978-1-62703-658-0_11, pp. 193-226.
16. The PyMOL Molecular Graphics System (Version 2.0), Schrödinger, LLC: New York, USA, 2017.
17. M. S. Valdés-Tresanco, M. E. Valdés-Tresanco, P. A. Valiente and E. Moreno, Journal of Chemical Theory and Computation, 2021, 17, 6281-6291.
18. G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu and A. Lu, Nucleic Acids Research, 2021, 49, W5-W14.
19. P. Kumar, K. Kadyan, M. Duhan, J. Sindhu, V. Singh and B. S. Saharan, Chemistry Central Journal, 2017, 11, 1-14.
20. F. M. Vargas, Journal of Chemical Education, 2014, 91, 396-401.
21. T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner and H. Mori, Molecular systems biology, 2006, 2, 2006.0008.
22. C. H. Teh, W. A. Nazni, A. H. Nurulhusna, A. Norazah and H. L. Lee, BMC microbiology, 2017, 17, 1-8.
23. M. N. Gallucci, M. Oliva, C. Casero, J. Dambolena, A. Luna, J. Zygadlo and M. Demo, Flavour and fragrance journal, 2009, 24, 348-354.
24. K. E. Whalen, K. L. Poulson-Ellestad, R. W. Deering, D. C. Rowley and T. J. Mincer, Journal of natural products, 2015, 78, 402-412.
25. T. J. Opperman, S. M. Kwasny, H.-S. Kim, S. T. Nguyen, C. Houseweart, S. D'Souza, G. C. Walker, N. P. Peet, H. Nikaido and T. L. Bowlin, Antimicrobial agents and chemotherapy, 2014, 58, 722-733.

[^0]: a.

 Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City 700000, Vietnam.
 E-mail: thaikhacminh@ump.edu.vn
 b. Department of Pharmacy, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Dist. 4, Ho Chi Minh City 700000, Vietnam.
 c. School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward., Thu Duc Dist, Ho Chi Minh City, 700000, Vietnam.
 d. Imperial College London, London SW7 2AZ, UK
 †Electronic Supplementary Information (ESI) available:See DOI: 10.1039/x0xx00000x
 \ddagger These author contributed equally to this work and are co-first authors.

