Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information to

Enhanced solar absorption and photoelectrochemical properties

of Al-reduced TiO₂/TiO_{2-x}/CdS heterojunction nanorods

Xiao Li, Jingshan Hou, Jing Wang, Yanwei Huang, Guoying Zhao, Ganghua Zhang*

and Yongzheng Fang*

School of Materials Science and Engineering, Shanghai Institute of Technology,

Shanghai, 201418, P. R. China;

E-mails: ganghuazhang@sit.edu.cn (G.H. Zhang) and fyz1003@sina.com (Y.Z. Fang)

Fig. S1 (a) EDS results for $TiO_2/TiO_{2-x}/CdS$ composite film. (b) Elemental mapping images of Cd, O, S, and Ti elements.

Fig. S2 Optical photographs of film electrodes.

Fig. S3 The optical bandgaps of TiO_2/TiO_{2-x} film samples prepared at different Alreduction temperatures.

Fig. S4 Resistance value of FTO conductive glass annealed at different Al-reduction temperatures.

Fig. S5 Photocurrent densities of $TiO_2/TiO_{2-x}/CdS$ after exposing to air for six months (a) and the XRD patterns of $TiO_2/TiO_{2-x}/CdS$ before and after photostability test (b).

Fig. S6 The Mott-Schottky plots of TiO_2/TiO_{2-x} and CdS.

photoanodes	photocurrent density (bias)	light and intensity	electrolyte	ref
		(100 mW/cm ²)		
(nanoparticles)			1 M Na ₂ S	1
TiO ₂ /CdS	4.63 mA/cm ² (-0.2V vs. Ag/AgCl)			
(nanosheet arrays)		simulated light 500 W	$0.25~M~Na_2S~+$	2
TiO ₂ /CdS	3.24 mA/cm ² (0V vs. Ag/AgCl)	Xe lamp	$0.35 \text{ M} \text{ Na}_2 \text{SO}_3$	
(nanorod arrays)		simulated light 500 W	$1 \text{ M Na}_2\text{S}$	3
TiO ₂ /CdS	5.778 mA/cm ² (0V vs. Ag/AgCl)	Xe lamp		
(nanotube arrays)		simulated light 500 W	$0.25~M~Na_2S~+$	4
H:TiO ₂ /CdS	2.0 mA/cm ² (-0.43V vs. Ag/AgCl)	Xe lamp	$0.35 \text{ M} \text{ Na}_2 \text{SO}_3$	
(nanobullet arrays)			$0.25~M~Na_2S~+$	5
H:TiO ₂ /CdS	0.5 mA/cm ² (0 V vs Ag/AgCl)		$0.35 \text{ M} \text{ Na}_2 \text{SO}_3$	
(nanowire arrays)		simulated light 150 W	$0.25~M~Na_2S~+$	6
H:TiO ₂ /CdS	4.0 mA/cm ² (0.5 V vs. RHE)	Xe lamp	0.35 M Na ₂ SO ₃	
H:CdS/TiO ₂	7.2 mA/cm ² (0.5 V vs. RHE)			

Table S1 PEC performances of the TiO₂/CdS related photoanodes.

Notes and references

[1] S. S. Kalanur, Y. J. Hwang and O. S. Joo, J. Colloid Interface Sci., 2013, 402, 94-99.

[2] H. Yao, W. Fu, H. Yang, J. Ma, M. Sun, Y. Chen and M. Li, Electrochim. Acta, 2014, **125**, 258-265.

[3] H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li and L. Guo, J. Phys. Chem. C., 2010, **114**, 16451-16455.

[4] P. Lv, H. Yang, W. Fu, H. Sun, W. Zhang, M. Li and S. Su, CrystEngComm, 2014, 16, 6955-6962.

[5] Y. S. Chang, M. Choi, M. Baek, P. Y. Hsieh, K. Yong and Y. J. Hsu, Appl. Catal. B Environ., 2018, **225**, 379-385.

[6] H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J. Z. Zhang and Y. Li, Nanoscale, 2012, 4, 1463-1466.

Sample	A_1	$\tau_1 (\mu s)$	A_2	$\tau_2(\mu s)$	τ (μs)
TiO ₂	0.58898	0.19513	0.19837	1.09393	0.78
CdS	0.71859	0.23258	0.17371	1.32039	0.86
TiO ₂ /TiO _{2-x}	0.40952	0.19322	0.19627	1.22371	0.96
TiO ₂ /TiO _{2-x} /CdS	0.46588	0.21779	0.25027	1.5294	1.25

Table S2 Parameters obtained from time-resolved PL decay curves according to a double-exponential decay.