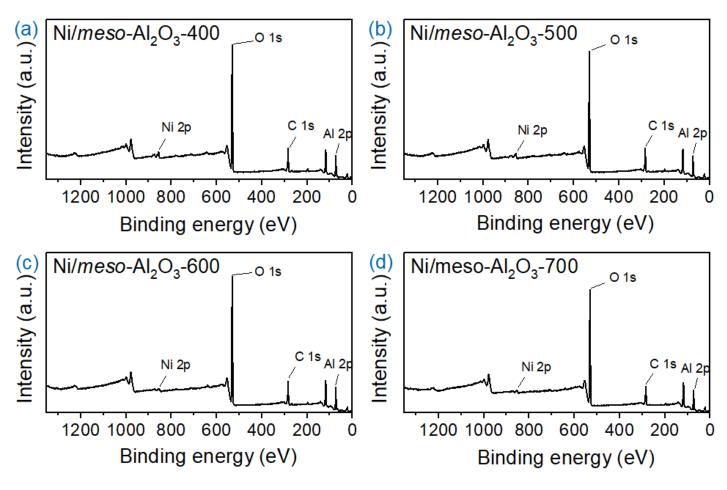

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information (ESI) for

A General and Selective Ni-Catalysed Reductive Amination using Hydrazine Hydrate as Facile Nitrogen and Hydrogen Sources

Jiazheng Zhu,^{‡a} Chengjie Duan,^{‡a} Sen Ye,^d Qizhong Zhang,^e Kun Li,^a Guangke He,^a Xiang Liu,^{*, a,c} and Zhiguo Zhang^{*, b, c}


- a. School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
- b. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
- c. Institute of Zhejiang University-Quzhou, Quzhou 32400, China
- d. Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- e. Anhui Haihua Chemical Technology Group Co., Ltd., Bengbu 233000, China
- *‡ These authors contributed equally to this work.*

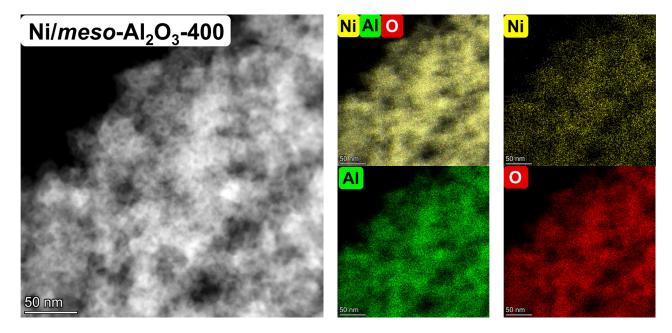
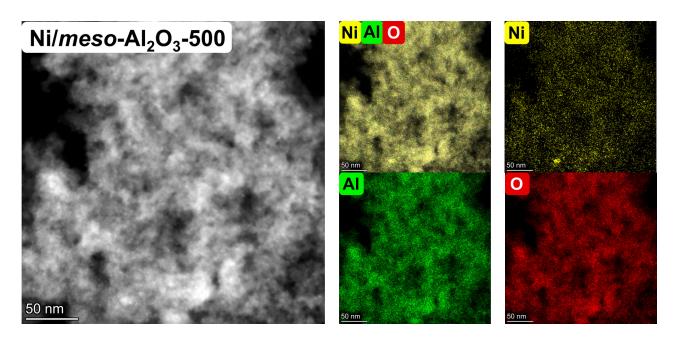
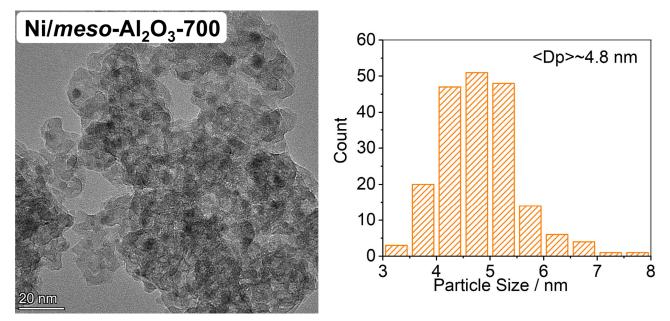
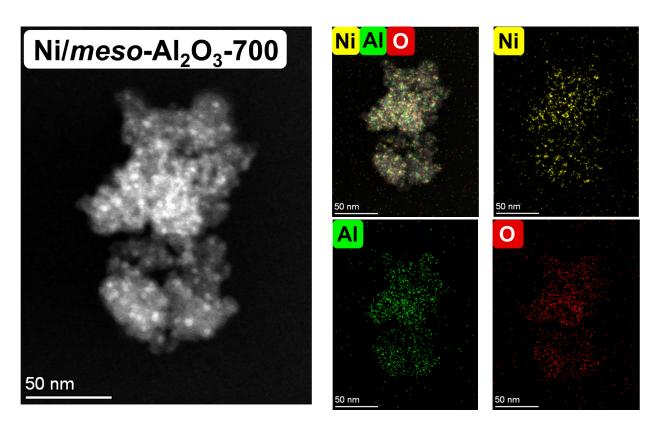

Figure S1. N₂ adsorption-desorption isotherms and the BJH pore size distrubution (inset) of (a) Ni/meso-Al₂O₃-400; (b) Ni/meso-Al₂O₃-500; (c) Ni/meso-Al₂O₃-600; (d) Ni/meso-Al₂O₃-700.

Table S1. Physicochemical properties for various Ni/*meso*-Al₂O₃-*T* catalysts.


Entry	Catalyst	S _{BET} (m ² ·g ⁻¹) ^a	V _p (cm³⋅g⁻¹)ª	D _p (nm)ª	Actual Ni loading (wt%) ^b				
1	Ni/ <i>meso</i> -Al ₂ O ₃ -400	234	0.669	11	6.50				
2	Ni/ <i>meso</i> -Al ₂ O ₃ -500	240	0.679	11	6.60				
3	Ni/ <i>meso</i> -Al ₂ O ₃ -600	231	0.686	11	6.62				
4	Ni/ <i>meso</i> -Al ₂ O ₃ -700	246	0.607	10	6.79				
^{<i>a</i>} Specific surface area (S_{BET}), cumulative pore volume (V_p), and pore diameter									
(D_p) were determined by N ₂ physisorption. ^b Actual Ni loadings were									
deterimined by ICP-OES.									


Figure S2. Full-scan XPS spectrum of (a) Ni/*meso*-Al₂O₃-400; (b) Ni/*meso*-Al₂O₃-500; (c) Ni/*meso*-Al₂O₃-600; (d) Ni/*meso*-Al₂O₃-700.


Figure S3. HAADF-STEM image and representative EDS elemental maps of nickel (yellow), alumina (green), and oxygen (red) for Ni/*meso*-Al₂O₃-400.

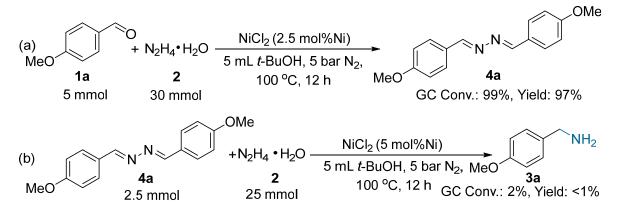
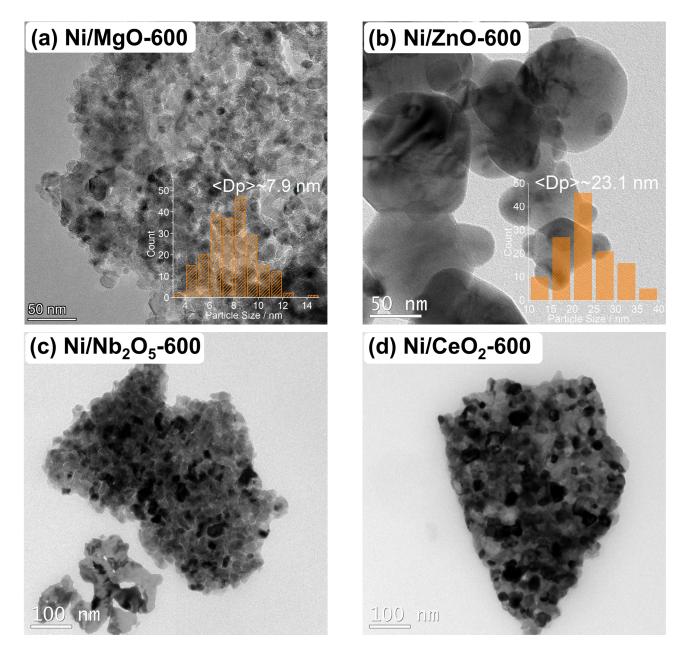

Figure S4. HAADF-STEM image and representative EDS elemental maps of nickel (yellow), alumina (green), and oxygen (red) for Ni/*meso*-Al₂O₃-500.

Figure S5. TEM image and Ni particle size distribution of Ni/*meso*-Al₂O₃-700.


Figure S6. HAADF-STEM image and representative EDS elemental maps of nickel (yellow), alumina (green), and oxygen (red) for Ni/*meso*-Al₂O₃-700.

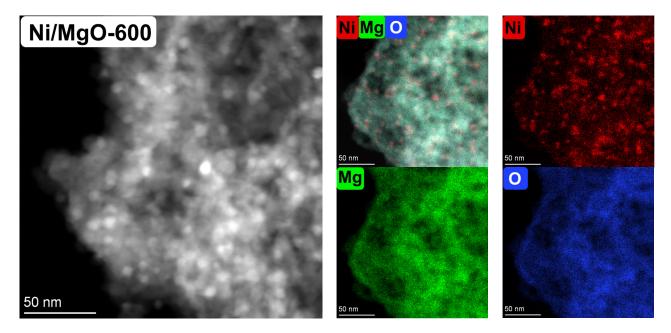

Scheme S1. Control experiments for the reactions of 1a and 4a in the presence of NiCl₂.

Table S2. Reductive amination of 4-methoxybenzyl aldehyde (**1a**) with hydrazine hydrate (**2**) over different catalysts.^{*a*}

	$V_{+} N_{2}H_{4} \cdot H_{2}O$ non-noble metal catalyst											
	MeO	112114 1120	t-BuOH, N	N₂,100 ℃, [•]	12 ĥ M	eO´ `	́За	-	ł			
	1a 2 Target product											
	$\begin{array}{c c} R & & R & + & R & & R & + & R & & R & + & R & -CH_3 & + & R & & & R \\ \hline & & & & & & H \\ & & & & & & & & & & & \\ & & & &$											
	4a	5a		Н 6а	7a			а				
			Bv-pr	oducts) =		 	i i			
By-products R =OMe												
			Conv.		Yield (%) ^b							
Entry	Catalyst	(%)	3a	4a	5a	6a	7a	8a				
1	Ni/MgO-6	00		100	70	0	8	11	11	0		
2	Ni/ZnO-60	00		100	51	10	0	39	0	0		
3	Ni/CeO ₂ -6		100	17	83	0	0	0	0			
4	Ni/Nb2O5-		100	16	82	0	0	0	0			
5	Fe/meso-	100	0	93	1	0	0	6				
6	Co/meso-	100	0	98	0	0	0	1				
7	Cu/meso-	Al ₂ O ₃ -600		100	0	95	0	0	0	4		
^a Reaction conditions: 4-methoxy benzaldehyde (5.0 mmol), hydrazine hydrate (30												
mmol), catalyst (2.5 mol% metal based on 1a), <i>t</i> -BuOH (5.0 mL), 100 °C, 5 bar N ₂ , 12 h;												
n.r.=no reaction. ^b Conversions and yields were determined by GC-MS and GC analysis												
based on the consumption of 1a .												

Figure S7. TEM image and Ni particle size distribution of (a) Ni/MgO-600, (b) Ni/ZnO-600, (c) Ni/Nb₂O₅-600, (d) Ni/CeO₂-600.

Figure S8. HAADF-STEM image and representative EDS elemental maps of nickel (red), magnesium (green), and oxygen (blue) for Ni/MgO-600.

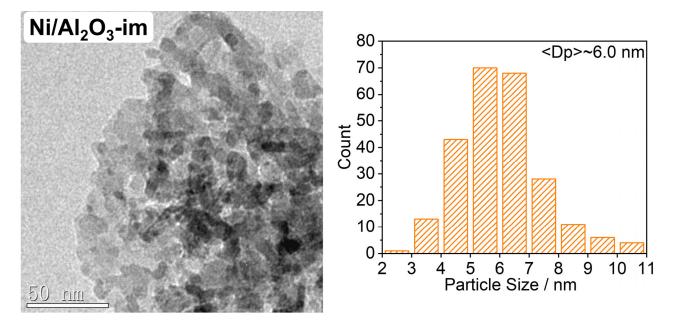
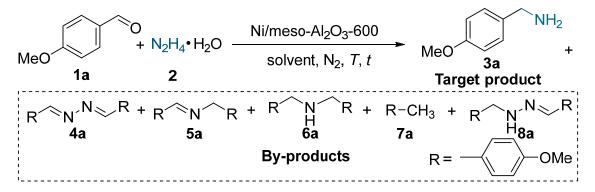
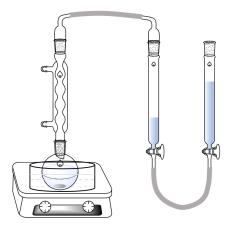
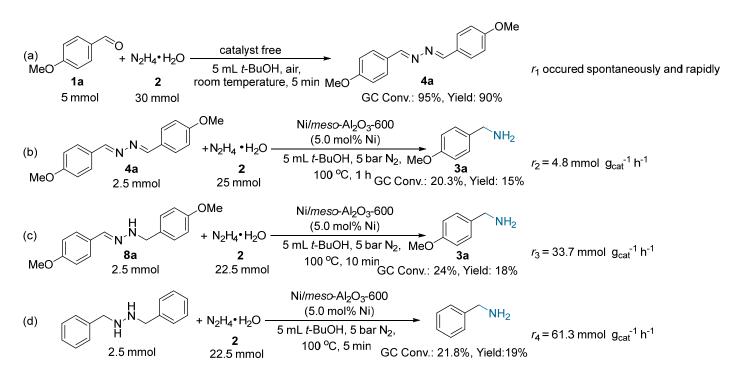




Figure S9. TEM image and Ni particle size distribution of Ni/Al₂O₃-im.

Table S3. Ni/meso-Al₂O₃-600 catalyzed reduction of 4-methoxy benzaldehyde (**1a**) and N₂H₄·H₂O (**2**) under different reaction conditions ^a



		Ni	N ₂	N ₂ H ₄	solvent	Т	Conv.	Yield (%) ^c						
Entry	Solvent	mol% ^b	(bar)	(mmol)	volume	(°C)	(%) ^c	3a	4a	5a	6a	7a	8a	oth-
		0.5		,	(mL)			~~~						ers
1	<i>t</i> -BuOH	2.5	5	30	5	100	100	92	0	3	0	5	0	0
2	MeOH	2.5	5	30	5	100	100	69	4	0	16	7	4	0
3	THF	2.5	5	30	5	100	100	65	19	2	0	2	0	12
4	toluene	2.5	5	30	5	100	100	51	13	24	2	5	0	5
5	<i>n</i> -hexane	2.5	5	30	5	100	100	47	4	0	44	5	0	0
6	<i>t</i> -BuOH	2.5	5	30	3	100	100	87	2	4	2	5	0	0
7	<i>t</i> -BuOH	2.5	5	30	4	100	100	86	9	0	0	3	0	2
8	<i>t</i> -BuOH	2.5	5	30	6	100	100	78	17	0	0	2	0	3
9	<i>t</i> -BuOH	2.5	5	30	7	100	100	75	20	0	0	3	0	2
10	<i>t</i> -BuOH	2.5	5	10	5	100	100	12	15	0	47	7	14	5
11	<i>t</i> -BuOH	2.5	5	20	5	100	100	57	6	0	30	4	3	0
12	<i>t</i> -BuOH	2.5	5	25	5	100	100	75	17	0	4	2	0	2
13	<i>t</i> -BuOH	2.5	5	35	5	100	100	91	2	0	4	4	0	0
14	<i>t</i> -BuOH	2.5	5	40	5	100	100	91	5	0	4	4	0	0
15	<i>t</i> -BuOH	2.5	5	30	5	90	100	77	13	4	2	0	4	0
16	<i>t</i> -BuOH	2.5	5	30	5	110	100	81	1	2	2	13	1	0
17	<i>t</i> -BuOH	1.2	5	30	5	100	100	81	15	0	0	2	0	2
18	<i>t</i> -BuOH	5	5	30	5	100	100	81	0	3	0	11	0	5
19	<i>t</i> -BuOH	5	1	30	5	100	100	86	8	0	1	3	0	2
20	<i>t</i> -BuOH	5	10	30	5	100	100	74	6	5	0	6	0	6
^a Reaction conditions: 4-methoxy benzaldehyde (5.0 mmol), hydrazine hydrate, Ni/meso-Al ₂ O ₃ -600, N ₂ , 12 h. ^b														
Based on 1a . ^c Conversions and yields were determined by GC-MS and GC analysis based on the consumption														
of 1a .														

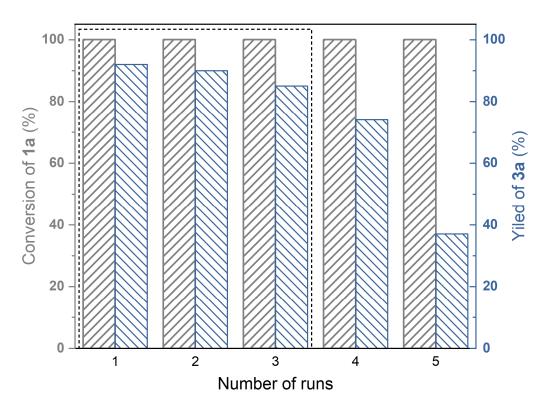
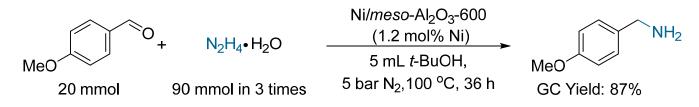


Figure S10. The equipment for hydrazine decomposition reaction. The reaction was initiated by adding 30 mmol hydrazine hydrate into a round bottom flask containing *t*-BuOH (5 mL) and Ni/*meso*-Al₂O₃-600 (106.7 mg). The reaction temperature (100 °C) was controlled by oil bath. The volume change of H₂ and N₂ was detected by a gas barrette and used for the calculation of N₂H₄ conversion. After 12 hrs reaction, 1180 mL gas was produced (calculated at room temperature, ~25 °C). The conversion of hydrazine was calculated by assuming the all the consumed N₂H₄ was converted into H₂ and N₂:


$$Conv.\% = \left[\frac{pV}{R(t/^{O}C + 273.15)} \times \frac{1}{3}\right] / n_{N_{2}H_{4}}$$

Scheme S2. Initial reaction rate for steps involved in the N₂H₄-involved reductive amination.

Figure S11. Recycle experiments using Ni/*meso*-Al₂O₃-600 catalyst in the reaction of 4-methoxy benzaldehyde with hydrazine hydrate.

Scheme S3. Gram-scale reductive amination of 4-methoxybenzyl aldehyde with N₂H₄·H₂O.