A 3D paddle-wheel type Cu(II)-based MOF with *pcu* topology as an efficient photocatalyst for antibiotics

Materials and Method

All the reagents to perform synthesis were obtained from commercial sources and were used without further purification. Powder X-ray diffraction (PXRD) data were collected using Bruker ADVANCE X-ray diffractometer with Cu-K α radiation (λ =1.5418 Å) at 50 kV, 20 mA with a scanning rate of 6°/min and a step size of 0.02°. Fourier transform infrared (FT-IR) spectra for both the MOFs as KBr discs were recorded on Nicolet Impact 750 FTIR in the range of 400-4000 cm⁻¹. Scanning electron microscopy (SEM) was carried out on a FEI Quanta 400 FEG field emission scanning electron microscope. Nitrogen adsorption-desorption measurements were performed at 77 K in a liquid nitrogen bath on a Micromeritics ASAP 3020 analyzer. Samples were degassed at 150 °C for 10 h on degas vacuum system prior to analysis. The Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface areas (S_{BET}). The UV–vis absorbance and diffuse-reflectance spectra (UV–vis DRS) were characterized by USA PE Lambda 750 S.

X-ray Crystallography

The single crystal X-ray diffraction data for the MOF **1** were collected on a Bruker SMART APEX diffractometer which was equipped with graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) by using an ω -scan technique. The structures were solved by direct method (SHLEXS-2014) and refined using the full-matrix least-square procedure based on F^2 (Shelxl-2014). All the hydrogen atoms were generated geometrically and refined isotropically using a riding model. CCDC numbers: 2168426.

Fig. S2 Simulated, as-synthesized, 1/NFT and 1/pH = 5 PXRD plots for 1.

Fig. S3 sorption and desorption isotherms at 77 K for 1.

Fig. S4 view of the SEM before and after catalytic reaction.

Fig. S5 UV-Vis spectrum for 1.

Fig. S6 K-M vs. E_g plot for 1.

Fig. S7 typical Motte Schottky plot for 1.

Antibiotics			K	R ²		
САР			0.00142	0.97655		
NFT		0.03245	0.99488			
MDZ			0.00276	0.97557		
1	NFT	pH	K	R ²		
	Concentration of NFT					
50mg/100ml	10mg/L	pH=5	0.03245	0.99488		
	20mg/L		0.02793	0.99848		
	30mg/L		0.02779	0.97064		
		Dosage of sampl	e			
40mg/100ml	10mg/L	pH=5	0.03021	0.99749		
50mg/100ml			0.03245	0.99488		
60mg/100ml			0.03002	0.99892		
		рН				
50mg/100ml	10mg/L	pH =4	0.00362	0.97773		
		pH =5	0.03245	0.99488		
		pH =6	0.02866	0.99282		
		Mechanism				
50mg/100ml	10mg/L	H ₂ O	0.03246	0.99488		
		AO	0.02809	0.99773		
		BQ	0.02588	0.98243		
		TBA	0.0297	0.97923		

Table S1 Rate constants for the decomposition of antibiotics under different conditions

Parameter	1		
Formula	$C_{34}H_{22}N_4O_8Cu_2$		
Formula weight	741.63		
Crystal system	Monoclinic		
Space group	P2/n		
Crystal Color	Green		
<i>a</i> , Å	10.9001(8)		
b, Å	10.8846(8)		
<i>c</i> , Å	13.6953(10)		
α , °	90		
β , °	108.552(1)		
γ, °	90		
<i>V</i> , Å ³	1540.4(2)		
Ζ	2		
$\rho_{calcd}, g/cm^3$	1.599		
μ , mm ⁻¹	1.442		
θ Range, deg	1.9-27.6		
<i>F</i> (000)	752		
Reflection Collected	9127		
Independent reflections (R_{int})	0.027		
Reflections with $I > 2\sigma(I)$	2827		
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0322, 0.0813		
R_1 , wR_2 (all data) ^{**}	0.0435, 0.0970		

Table S2. Crystallographic data and structure refinement details for 1

_

 $\overline{*R = \sum (F_{o} - F_{c}) / \sum (F_{o}), **wR_{2}} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum (F_{o}^{2})^{2} \}^{1/2}.$

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
		1	
Cu(1)-O(1)	1.9820(19)	Cu(1)-O(3)	1.985(2)
Cu(1)-N(1)	2.126(2)	Cu(1)-O(2)#1	1.9762(19)
Cu(1)-O(4)#2	1.992(2)		
Angle	ω, deg	Angle	ω, deg

Table 3 Selected bond distances (\AA) and angles (deg) for 1

		1	
O(1)-Cu(1)-O(3)	89.96(8)	O(1)-Cu(1)-N(1)	95.83(8)
O(1)-Cu(1)-O(2)#1	166.88(9)	O(1) -Cu(1)-O(4)#2	90.11(8)
O(3)-Cu(1)-N(1)	96.11(8)	O(2)#1-Cu(1)-O(3)	89.10(9)
O(3)-Cu(1)-O(4)#2	166.87(8)	O(2)#1-Cu(1)-N(1)	97.29(8)
O(4)#2-Cu(1)-N(1)	96.95(8)	O(2)#1-Cu(1)-O(4)#2	87.86(8)

Symmetry Codes: For 1: #1 = x, 1+y, z; #2 = 3/2-x, y, 3/2-z.