Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1

Supplementary Material

2

3 Hydrochlorination of acetylene catalyzed by mesoporous

4 carbon with hierarchical assembly of polyimide nanosheets

- 5 Zihan Guo ^a, Wencai Peng ^a, Jian Li ^{a, c}, Feng Li ^a, Qiangang Zhang ^a, Lijie Yang ^a,
- 6 Dongyang Xie^a, Yanzhao Dong^{a*}, Jinli Zhang^{a, b} and Haiyang Zhang^{a*}

7 ^a School of Chemistry and Chemical Engineering/

- 8 State Key Laboratory Incubation Base for Green Processing of Chemical Engineering,
- 9 Shihezi University, Shihezi, Xinjiang, 832000, P.R. China;
- 10 ^b School of Chemical Engineering and Technology, Tianjin University, Jinnan District,
- 11 Tianjin, 300072, P.R. China.
- 12 ° Yunnan Precious Metals Lab Co., Ltd, Kunming 650106, P. R. China.
- 13 * Corresponding authors.
- 14 Fax: +86-993-2057006; Tel: +86-993-2057006;
- 15 E-mail address: <u>yzdong2012@shzu.edu.cn</u> (Y. Dong);
- 16 <u>zhy198722@163.com(</u>H. Zhang);

18 Table of contents:

- 19 Table S1 Comparison of performance of the reported non-metallic catalysts for20 acetylene hydrochlorination reaction in recent years.
- 21 Table S2 Relative atomic percentage of different O-containing species, determined by
- 22 XPS.
- 23 Figure S1 Comparison of stability of NPCs-900 and AC catalysts in the acetylene
- 24 hydrochlorination reaction.
- 25 Figure S2 TG curves of the fresh and spent catalysts recorded in air atmosphere.

Table S1 Comparison of performance of the reported non-metallic catalysts for acetylene

nyaroomormanon reaction in recent years.				
Catalysts	Conversion of Acetylene (%)	Conditions	Ref.	
Z_4M_1	60	180°C, GHSV(C_2H_2) = 50 h ⁻¹ , and V(HCl)/V(C_2H_2) = 1.15	1	
PANI-AC-900	76	180°C, GHSV(C_2H_2) = 36 h ⁻¹ , and V(HCl)/V(C_2H_2) = 1.1	2	
N@CBC-FE	75	220°C, GHSV(C_2H_2) = 50 h ⁻¹ , and V(HCl)/V(C_2H_2) = 1.1	3	
MF-600	95	220°C, GHSV(C_2H_2) = 30 h ⁻¹ , and V(HC1)/V(C_2H_2) = 1.2	4	
20%[DBU] [Cl]/AC	86	240°C, GHSV(C_2H_2) = 30 h ⁻¹ , and V(HC1)/V(C_2H_2) = 1.2	5	
DF/BC-850	92	220°C, GHSV(C_2H_2) = 45 h ⁻¹ , and V(HCl)/V(C_2H_2) = 1.15	6	
1.00NPC	87	220°C, GHSV(C_2H_2) = 30 h ⁻¹ , and V(HC1)/V(C_2H_2) = 1.2	7	
PACP-800	84	180°C, GHSV(C_2H_2) = 30 h ⁻¹ , and V(HCl)/V(C_2H_2) = 1.15	8	
NPCs-900	91	180° C, GHSV(C ₂ H ₂) = 30 h ⁻¹ , and V(HCl)/V(C ₂ H ₂) = 1.15	This work	

hydrochlorination reaction in recent years.

Table S2 Relative atomic percentage of different O-containing species, determined by XPS.

Comulas	Atomic O	Area (%)	
Samples	(at%)	C=O	С-ОН
NPCs-600	11.52	51.67	48.33
NPCs-700	9.58	54.33	45.67
NPCs-800	12.31	57.06	42.94
NPCs-900	12.19	57.93	42.07
NPCs-1000	10.61	53.78	46.22

32 Figure S1. Comparison of stability of NPCs-900 and AC catalysts in the acetylene

33 hydrochlorination reaction. Reaction conditions: $T = 180^{\circ}C$, $GHSV(C_2H_2) = 30 h^{-1}$, and

34
$$V(HCl)/V(C_2H_2) = 1.15.$$

36

Figure S2. TG curves of the fresh and spent catalysts recorded in air atmosphere.

41 References

- 42 1. X. Li, J. Zhang and W. Li, J. Ind. Eng. Chem., 2016, 44, 146-154.
- 43 2. C. Zhang, L. Kang, M. Zhu and B. Dai, RSC Adv., 2015, 5, 7461-7468.
- 44 3. Y. Liu, H. Zhang, X. Li, L. Wang, Y. Dong, W. Li and J. Zhang, *Appl. Catal. A*, 2021, **611**, 11702.
- 45 4. X. Qiao, Z. Zhou, X. Liu, C. Zhao, Q. Guan and W. Li, Catal. Sci. Technol., 2019, 9, 3753-3762.
- 46 5. X. Dong, G. Liu, Z. Chen, Q. Zhang, Y. Xu and Z. Liu, Mol. Catal., 2022, 525, 112366.
- 47 6. S. Wu, A. Jiang, X. Zhou, Y. Liu and S. Cao, *Mol. Catal.*, 2022, 532, 112719.
- 48 7. S. Wei, Y. Qiu, X. Sun, X. Wang, H. Li, G. Lan, J. Liu and Y. Li, ACS Sustain. Chem. Eng., 2022,
- **49 10**, 10476-10485.
- 50 8. F. Li, H. Zhang, M. Zhang, L. Li, L. Yao, W. Peng and J. Zhang, ACS Sustain. Chem. Eng., 2022,

10, 194-203.